NO Initial ITS Start location: l3 0: l0 -> l1 : x^0'=x^post0, t^0'=t^post0, y^0'=y^post0, (-x^0+x^post0-y^0 == 0 /\ t^0-y^0 <= 0 /\ y^0-y^post0 == 0 /\ -x^0 <= 0 /\ t^0-t^post0 == 0), cost: 1 1: l1 -> l0 : x^0'=x^post1, t^0'=t^post1, y^0'=y^post1, (y^0-y^post1 == 0 /\ t^0-t^post1 == 0 /\ x^0-x^post1 == 0), cost: 1 2: l2 -> l0 : x^0'=x^post2, t^0'=t^post2, y^0'=y^post2, (1+t^50-t^40 == 0 /\ -y^post2+y^0 == 0 /\ -1-x^0 <= 0 /\ 1-t^70+t^80 == 0 /\ 1+t^post2-t^90 == 0 /\ x^0-x^post2 == 0 /\ 1+t^90-t^80 == 0 /\ 1+t^30-t^20 == 0 /\ 1-t^30+t^40 == 0 /\ 1-t^60+t^70 == 0 /\ 1-t^50+t^60 == 0 /\ 1+t^10 == 0 /\ 1+t^20-t^10 == 0 /\ t^post2-y^0 <= 0), cost: 1 3: l3 -> l2 : x^0'=x^post3, t^0'=t^post3, y^0'=y^post3, (t^0-t^post3 == 0 /\ -y^post3+y^0 == 0 /\ x^0-x^post3 == 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : x^0'=x^post0, t^0'=t^post0, y^0'=y^post0, (-x^0+x^post0-y^0 == 0 /\ t^0-y^0 <= 0 /\ y^0-y^post0 == 0 /\ -x^0 <= 0 /\ t^0-t^post0 == 0), cost: 1 New rule: l0 -> l1 : x^0'=x^0+y^0, (x^0 >= 0 /\ t^0-y^0 <= 0), cost: 1 Applied preprocessing Original rule: l1 -> l0 : x^0'=x^post1, t^0'=t^post1, y^0'=y^post1, (y^0-y^post1 == 0 /\ t^0-t^post1 == 0 /\ x^0-x^post1 == 0), cost: 1 New rule: l1 -> l0 : TRUE, cost: 1 Applied preprocessing Original rule: l2 -> l0 : x^0'=x^post2, t^0'=t^post2, y^0'=y^post2, (1+t^50-t^40 == 0 /\ -y^post2+y^0 == 0 /\ -1-x^0 <= 0 /\ 1-t^70+t^80 == 0 /\ 1+t^post2-t^90 == 0 /\ x^0-x^post2 == 0 /\ 1+t^90-t^80 == 0 /\ 1+t^30-t^20 == 0 /\ 1-t^30+t^40 == 0 /\ 1-t^60+t^70 == 0 /\ 1-t^50+t^60 == 0 /\ 1+t^10 == 0 /\ 1+t^20-t^10 == 0 /\ t^post2-y^0 <= 0), cost: 1 New rule: l2 -> l0 : t^0'=-10, (10+y^0 >= 0 /\ 1+x^0 >= 0), cost: 1 Applied preprocessing Original rule: l3 -> l2 : x^0'=x^post3, t^0'=t^post3, y^0'=y^post3, (t^0-t^post3 == 0 /\ -y^post3+y^0 == 0 /\ x^0-x^post3 == 0), cost: 1 New rule: l3 -> l2 : TRUE, cost: 1 Simplified rules Start location: l3 4: l0 -> l1 : x^0'=x^0+y^0, (x^0 >= 0 /\ t^0-y^0 <= 0), cost: 1 5: l1 -> l0 : TRUE, cost: 1 6: l2 -> l0 : t^0'=-10, (10+y^0 >= 0 /\ 1+x^0 >= 0), cost: 1 7: l3 -> l2 : TRUE, cost: 1 Eliminating location l2 by chaining: Applied chaining First rule: l3 -> l2 : TRUE, cost: 1 Second rule: l2 -> l0 : t^0'=-10, (10+y^0 >= 0 /\ 1+x^0 >= 0), cost: 1 New rule: l3 -> l0 : t^0'=-10, (10+y^0 >= 0 /\ 1+x^0 >= 0), cost: 2 Applied deletion Removed the following rules: 6 7 Eliminating location l1 by chaining: Applied chaining First rule: l0 -> l1 : x^0'=x^0+y^0, (x^0 >= 0 /\ t^0-y^0 <= 0), cost: 1 Second rule: l1 -> l0 : TRUE, cost: 1 New rule: l0 -> l0 : x^0'=x^0+y^0, (x^0 >= 0 /\ t^0-y^0 <= 0), cost: 2 Applied deletion Removed the following rules: 4 5 Eliminated locations on linear paths Start location: l3 9: l0 -> l0 : x^0'=x^0+y^0, (x^0 >= 0 /\ t^0-y^0 <= 0), cost: 2 8: l3 -> l0 : t^0'=-10, (10+y^0 >= 0 /\ 1+x^0 >= 0), cost: 2 Applied acceleration Original rule: l0 -> l0 : x^0'=x^0+y^0, (x^0 >= 0 /\ t^0-y^0 <= 0), cost: 2 New rule: l0 -> l0 : x^0'=x^0+n*y^0, (x^0 >= 0 /\ (-1+n)*y^0+x^0 >= 0 /\ n >= 0 /\ -t^0+y^0 >= 0), cost: 2*n Sub-proof via acceration calculus written to file:///tmp/tmpnam_AMkBbf.txt Applied nonterm Original rule: l0 -> l0 : x^0'=x^0+y^0, (x^0 >= 0 /\ t^0-y^0 <= 0), cost: 2 New rule: l0 -> [4] : (x^0 >= 0 /\ -y^0 <= 0 /\ -t^0+y^0 >= 0), cost: NONTERM Sub-proof via acceration calculus written to file:///tmp/tmpnam_dcglfm.txt Applied simplification Original rule: l0 -> [4] : (x^0 >= 0 /\ -y^0 <= 0 /\ -t^0+y^0 >= 0), cost: NONTERM New rule: l0 -> [4] : (x^0 >= 0 /\ -t^0+y^0 >= 0 /\ y^0 >= 0), cost: NONTERM Applied deletion Removed the following rules: 9 Accelerated simple loops Start location: l3 10: l0 -> l0 : x^0'=x^0+n*y^0, (x^0 >= 0 /\ (-1+n)*y^0+x^0 >= 0 /\ n >= 0 /\ -t^0+y^0 >= 0), cost: 2*n 12: l0 -> [4] : (x^0 >= 0 /\ -t^0+y^0 >= 0 /\ y^0 >= 0), cost: NONTERM 8: l3 -> l0 : t^0'=-10, (10+y^0 >= 0 /\ 1+x^0 >= 0), cost: 2 Applied chaining First rule: l3 -> l0 : t^0'=-10, (10+y^0 >= 0 /\ 1+x^0 >= 0), cost: 2 Second rule: l0 -> l0 : x^0'=x^0+n*y^0, (x^0 >= 0 /\ (-1+n)*y^0+x^0 >= 0 /\ n >= 0 /\ -t^0+y^0 >= 0), cost: 2*n New rule: l3 -> l0 : x^0'=x^0+n*y^0, t^0'=-10, (x^0 >= 0 /\ (-1+n)*y^0+x^0 >= 0 /\ 10+y^0 >= 0 /\ n >= 0), cost: 2+2*n Applied chaining First rule: l3 -> l0 : t^0'=-10, (10+y^0 >= 0 /\ 1+x^0 >= 0), cost: 2 Second rule: l0 -> [4] : (x^0 >= 0 /\ -t^0+y^0 >= 0 /\ y^0 >= 0), cost: NONTERM New rule: l3 -> [4] : (x^0 >= 0 /\ y^0 >= 0), cost: NONTERM Applied deletion Removed the following rules: 10 12 Chained accelerated rules with incoming rules Start location: l3 8: l3 -> l0 : t^0'=-10, (10+y^0 >= 0 /\ 1+x^0 >= 0), cost: 2 13: l3 -> l0 : x^0'=x^0+n*y^0, t^0'=-10, (x^0 >= 0 /\ (-1+n)*y^0+x^0 >= 0 /\ 10+y^0 >= 0 /\ n >= 0), cost: 2+2*n 14: l3 -> [4] : (x^0 >= 0 /\ y^0 >= 0), cost: NONTERM Removed unreachable locations and irrelevant leafs Start location: l3 14: l3 -> [4] : (x^0 >= 0 /\ y^0 >= 0), cost: NONTERM Computing asymptotic complexity Proved nontermination of rule 14 via SMT. Proved the following lower bound Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: (x^0 >= 0 /\ y^0 >= 0)