WORST_CASE(Omega(0),?) Initial ITS Start location: l7 0: l0 -> l1 : __disjvr_0^0'=__disjvr_0^post0, y_6^0'=y_6^post0, Result_4^0'=Result_4^post0, x_5^0'=x_5^post0, (y_6^0-y_6^post0 == 0 /\ __disjvr_0^0-__disjvr_0^post0 == 0 /\ x_5^0-x_5^post0 == 0 /\ Result_4^0-Result_4^post0 == 0), cost: 1 1: l1 -> l3 : __disjvr_0^0'=__disjvr_0^post1, y_6^0'=y_6^post1, Result_4^0'=Result_4^post1, x_5^0'=x_5^post1, (Result_4^0-Result_4^post1 == 0 /\ y_6^0-y_6^post1 == 0 /\ y_6^0-x_5^0 <= 0 /\ __disjvr_0^0-__disjvr_0^post1 == 0 /\ -x_5^post1+x_5^0 == 0), cost: 1 4: l1 -> l5 : __disjvr_0^0'=__disjvr_0^post4, y_6^0'=y_6^post4, Result_4^0'=Result_4^post4, x_5^0'=x_5^post4, (-Result_4^post4+Result_4^0 == 0 /\ -y_6^post4+y_6^0 == 0 /\ y_6^0-x_5^0 <= 0 /\ -1+x_5^post4-x_5^0 == 0 /\ -__disjvr_0^post4+__disjvr_0^0 == 0 /\ -y_6^0+x_5^0 <= 0), cost: 1 6: l1 -> l6 : __disjvr_0^0'=__disjvr_0^post6, y_6^0'=y_6^post6, Result_4^0'=Result_4^post6, x_5^0'=x_5^post6, (__disjvr_0^0-__disjvr_0^post6 == 0 /\ -1+x_5^post6-x_5^0 == 0 /\ Result_4^0-Result_4^post6 == 0 /\ y_6^0-y_6^post6 == 0 /\ 1-y_6^0+x_5^0 <= 0), cost: 1 2: l3 -> l4 : __disjvr_0^0'=__disjvr_0^post2, y_6^0'=y_6^post2, Result_4^0'=Result_4^post2, x_5^0'=x_5^post2, (-__disjvr_0^0+__disjvr_0^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ __disjvr_0^0-__disjvr_0^post2 == 0 /\ -Result_4^post2+Result_4^0 == 0 /\ -x_5^post2+x_5^0 == 0), cost: 1 3: l4 -> l2 : __disjvr_0^0'=__disjvr_0^post3, y_6^0'=y_6^post3, Result_4^0'=Result_4^post3, x_5^0'=x_5^post3, (0 == 0 /\ -x_5^post3+x_5^0 == 0 /\ -y_6^post3+y_6^0 == 0 /\ __disjvr_0^0-__disjvr_0^post3 == 0), cost: 1 5: l5 -> l1 : __disjvr_0^0'=__disjvr_0^post5, y_6^0'=y_6^post5, Result_4^0'=Result_4^post5, x_5^0'=x_5^post5, (y_6^0-y_6^post5 == 0 /\ x_5^0-x_5^post5 == 0 /\ __disjvr_0^0-__disjvr_0^post5 == 0 /\ Result_4^0-Result_4^post5 == 0), cost: 1 7: l6 -> l1 : __disjvr_0^0'=__disjvr_0^post7, y_6^0'=y_6^post7, Result_4^0'=Result_4^post7, x_5^0'=x_5^post7, (-x_5^post7+x_5^0 == 0 /\ -Result_4^post7+Result_4^0 == 0 /\ -y_6^post7+y_6^0 == 0 /\ __disjvr_0^0-__disjvr_0^post7 == 0), cost: 1 8: l7 -> l0 : __disjvr_0^0'=__disjvr_0^post8, y_6^0'=y_6^post8, Result_4^0'=Result_4^post8, x_5^0'=x_5^post8, (x_5^0-x_5^post8 == 0 /\ -Result_4^post8+Result_4^0 == 0 /\ -__disjvr_0^post8+__disjvr_0^0 == 0 /\ y_6^0-y_6^post8 == 0), cost: 1 Removed unreachable rules and leafs Start location: l7 0: l0 -> l1 : __disjvr_0^0'=__disjvr_0^post0, y_6^0'=y_6^post0, Result_4^0'=Result_4^post0, x_5^0'=x_5^post0, (y_6^0-y_6^post0 == 0 /\ __disjvr_0^0-__disjvr_0^post0 == 0 /\ x_5^0-x_5^post0 == 0 /\ Result_4^0-Result_4^post0 == 0), cost: 1 4: l1 -> l5 : __disjvr_0^0'=__disjvr_0^post4, y_6^0'=y_6^post4, Result_4^0'=Result_4^post4, x_5^0'=x_5^post4, (-Result_4^post4+Result_4^0 == 0 /\ -y_6^post4+y_6^0 == 0 /\ y_6^0-x_5^0 <= 0 /\ -1+x_5^post4-x_5^0 == 0 /\ -__disjvr_0^post4+__disjvr_0^0 == 0 /\ -y_6^0+x_5^0 <= 0), cost: 1 6: l1 -> l6 : __disjvr_0^0'=__disjvr_0^post6, y_6^0'=y_6^post6, Result_4^0'=Result_4^post6, x_5^0'=x_5^post6, (__disjvr_0^0-__disjvr_0^post6 == 0 /\ -1+x_5^post6-x_5^0 == 0 /\ Result_4^0-Result_4^post6 == 0 /\ y_6^0-y_6^post6 == 0 /\ 1-y_6^0+x_5^0 <= 0), cost: 1 5: l5 -> l1 : __disjvr_0^0'=__disjvr_0^post5, y_6^0'=y_6^post5, Result_4^0'=Result_4^post5, x_5^0'=x_5^post5, (y_6^0-y_6^post5 == 0 /\ x_5^0-x_5^post5 == 0 /\ __disjvr_0^0-__disjvr_0^post5 == 0 /\ Result_4^0-Result_4^post5 == 0), cost: 1 7: l6 -> l1 : __disjvr_0^0'=__disjvr_0^post7, y_6^0'=y_6^post7, Result_4^0'=Result_4^post7, x_5^0'=x_5^post7, (-x_5^post7+x_5^0 == 0 /\ -Result_4^post7+Result_4^0 == 0 /\ -y_6^post7+y_6^0 == 0 /\ __disjvr_0^0-__disjvr_0^post7 == 0), cost: 1 8: l7 -> l0 : __disjvr_0^0'=__disjvr_0^post8, y_6^0'=y_6^post8, Result_4^0'=Result_4^post8, x_5^0'=x_5^post8, (x_5^0-x_5^post8 == 0 /\ -Result_4^post8+Result_4^0 == 0 /\ -__disjvr_0^post8+__disjvr_0^0 == 0 /\ y_6^0-y_6^post8 == 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : __disjvr_0^0'=__disjvr_0^post0, y_6^0'=y_6^post0, Result_4^0'=Result_4^post0, x_5^0'=x_5^post0, (y_6^0-y_6^post0 == 0 /\ __disjvr_0^0-__disjvr_0^post0 == 0 /\ x_5^0-x_5^post0 == 0 /\ Result_4^0-Result_4^post0 == 0), cost: 1 New rule: l0 -> l1 : TRUE, cost: 1 Applied preprocessing Original rule: l1 -> l5 : __disjvr_0^0'=__disjvr_0^post4, y_6^0'=y_6^post4, Result_4^0'=Result_4^post4, x_5^0'=x_5^post4, (-Result_4^post4+Result_4^0 == 0 /\ -y_6^post4+y_6^0 == 0 /\ y_6^0-x_5^0 <= 0 /\ -1+x_5^post4-x_5^0 == 0 /\ -__disjvr_0^post4+__disjvr_0^0 == 0 /\ -y_6^0+x_5^0 <= 0), cost: 1 New rule: l1 -> l5 : x_5^0'=1+x_5^0, y_6^0-x_5^0 == 0, cost: 1 Applied preprocessing Original rule: l5 -> l1 : __disjvr_0^0'=__disjvr_0^post5, y_6^0'=y_6^post5, Result_4^0'=Result_4^post5, x_5^0'=x_5^post5, (y_6^0-y_6^post5 == 0 /\ x_5^0-x_5^post5 == 0 /\ __disjvr_0^0-__disjvr_0^post5 == 0 /\ Result_4^0-Result_4^post5 == 0), cost: 1 New rule: l5 -> l1 : TRUE, cost: 1 Applied preprocessing Original rule: l1 -> l6 : __disjvr_0^0'=__disjvr_0^post6, y_6^0'=y_6^post6, Result_4^0'=Result_4^post6, x_5^0'=x_5^post6, (__disjvr_0^0-__disjvr_0^post6 == 0 /\ -1+x_5^post6-x_5^0 == 0 /\ Result_4^0-Result_4^post6 == 0 /\ y_6^0-y_6^post6 == 0 /\ 1-y_6^0+x_5^0 <= 0), cost: 1 New rule: l1 -> l6 : x_5^0'=1+x_5^0, 1-y_6^0+x_5^0 <= 0, cost: 1 Applied preprocessing Original rule: l6 -> l1 : __disjvr_0^0'=__disjvr_0^post7, y_6^0'=y_6^post7, Result_4^0'=Result_4^post7, x_5^0'=x_5^post7, (-x_5^post7+x_5^0 == 0 /\ -Result_4^post7+Result_4^0 == 0 /\ -y_6^post7+y_6^0 == 0 /\ __disjvr_0^0-__disjvr_0^post7 == 0), cost: 1 New rule: l6 -> l1 : TRUE, cost: 1 Applied preprocessing Original rule: l7 -> l0 : __disjvr_0^0'=__disjvr_0^post8, y_6^0'=y_6^post8, Result_4^0'=Result_4^post8, x_5^0'=x_5^post8, (x_5^0-x_5^post8 == 0 /\ -Result_4^post8+Result_4^0 == 0 /\ -__disjvr_0^post8+__disjvr_0^0 == 0 /\ y_6^0-y_6^post8 == 0), cost: 1 New rule: l7 -> l0 : TRUE, cost: 1 Simplified rules Start location: l7 9: l0 -> l1 : TRUE, cost: 1 10: l1 -> l5 : x_5^0'=1+x_5^0, y_6^0-x_5^0 == 0, cost: 1 12: l1 -> l6 : x_5^0'=1+x_5^0, 1-y_6^0+x_5^0 <= 0, cost: 1 11: l5 -> l1 : TRUE, cost: 1 13: l6 -> l1 : TRUE, cost: 1 14: l7 -> l0 : TRUE, cost: 1 Eliminating location l0 by chaining: Applied chaining First rule: l7 -> l0 : TRUE, cost: 1 Second rule: l0 -> l1 : TRUE, cost: 1 New rule: l7 -> l1 : TRUE, cost: 2 Applied deletion Removed the following rules: 9 14 Eliminating location l5 by chaining: Applied chaining First rule: l1 -> l5 : x_5^0'=1+x_5^0, y_6^0-x_5^0 == 0, cost: 1 Second rule: l5 -> l1 : TRUE, cost: 1 New rule: l1 -> l1 : x_5^0'=1+x_5^0, y_6^0-x_5^0 == 0, cost: 2 Applied deletion Removed the following rules: 10 11 Eliminating location l6 by chaining: Applied chaining First rule: l1 -> l6 : x_5^0'=1+x_5^0, 1-y_6^0+x_5^0 <= 0, cost: 1 Second rule: l6 -> l1 : TRUE, cost: 1 New rule: l1 -> l1 : x_5^0'=1+x_5^0, 1-y_6^0+x_5^0 <= 0, cost: 2 Applied deletion Removed the following rules: 12 13 Eliminated locations on linear paths Start location: l7 16: l1 -> l1 : x_5^0'=1+x_5^0, y_6^0-x_5^0 == 0, cost: 2 17: l1 -> l1 : x_5^0'=1+x_5^0, 1-y_6^0+x_5^0 <= 0, cost: 2 15: l7 -> l1 : TRUE, cost: 2 Applied acceleration Original rule: l1 -> l1 : x_5^0'=1+x_5^0, 1-y_6^0+x_5^0 <= 0, cost: 2 New rule: l1 -> l1 : x_5^0'=n0+x_5^0, (n0 >= 0 /\ -n0+y_6^0-x_5^0 >= 0), cost: 2*n0 Sub-proof via acceration calculus written to file:///tmp/tmpnam_kLkliE.txt Applied instantiation Original rule: l1 -> l1 : x_5^0'=n0+x_5^0, (n0 >= 0 /\ -n0+y_6^0-x_5^0 >= 0), cost: 2*n0 New rule: l1 -> l1 : x_5^0'=y_6^0, (0 >= 0 /\ y_6^0-x_5^0 >= 0), cost: 2*y_6^0-2*x_5^0 Applied simplification Original rule: l1 -> l1 : x_5^0'=y_6^0, (0 >= 0 /\ y_6^0-x_5^0 >= 0), cost: 2*y_6^0-2*x_5^0 New rule: l1 -> l1 : x_5^0'=y_6^0, y_6^0-x_5^0 >= 0, cost: 2*y_6^0-2*x_5^0 Applied deletion Removed the following rules: 17 Accelerated simple loops Start location: l7 16: l1 -> l1 : x_5^0'=1+x_5^0, y_6^0-x_5^0 == 0, cost: 2 19: l1 -> l1 : x_5^0'=y_6^0, y_6^0-x_5^0 >= 0, cost: 2*y_6^0-2*x_5^0 15: l7 -> l1 : TRUE, cost: 2 Applied chaining First rule: l7 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : x_5^0'=1+x_5^0, y_6^0-x_5^0 == 0, cost: 2 New rule: l7 -> l1 : x_5^0'=1+x_5^0, y_6^0-x_5^0 == 0, cost: 4 Applied chaining First rule: l7 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : x_5^0'=y_6^0, y_6^0-x_5^0 >= 0, cost: 2*y_6^0-2*x_5^0 New rule: l7 -> l1 : x_5^0'=y_6^0, y_6^0-x_5^0 >= 0, cost: 2+2*y_6^0-2*x_5^0 Applied deletion Removed the following rules: 16 19 Chained accelerated rules with incoming rules Start location: l7 15: l7 -> l1 : TRUE, cost: 2 20: l7 -> l1 : x_5^0'=1+x_5^0, y_6^0-x_5^0 == 0, cost: 4 21: l7 -> l1 : x_5^0'=y_6^0, y_6^0-x_5^0 >= 0, cost: 2+2*y_6^0-2*x_5^0 Removed unreachable locations and irrelevant leafs Start location: l7 Computing asymptotic complexity Proved the following lower bound Complexity: Unknown Cpx degree: ? Solved cost: 0 Rule cost: 0