WORST_CASE(Omega(0),?) Initial ITS Start location: l6 0: l0 -> l2 : y_6^0'=y_6^post0, __disjvr_0^0'=__disjvr_0^post0, x_5^0'=x_5^post0, Result_4^0'=Result_4^post0, b_7^0'=b_7^post0, (-b_7^post0+b_7^0 == 0 /\ y_6^0-y_6^post0 == 0 /\ 1-y_6^0+x_5^0 <= 0 /\ Result_4^0-Result_4^post0 == 0 /\ -__disjvr_0^post0+__disjvr_0^0 == 0 /\ x_5^0-x_5^post0 == 0), cost: 1 3: l0 -> l4 : y_6^0'=y_6^post3, __disjvr_0^0'=__disjvr_0^post3, x_5^0'=x_5^post3, Result_4^0'=Result_4^post3, b_7^0'=b_7^post3, (0 == 0 /\ y_6^0-y_6^post3 == 0 /\ -b_7^post3+b_7^0 == 0 /\ __disjvr_0^0-__disjvr_0^post3 == 0 /\ y_6^0-x_5^0 <= 0 /\ x_5^0-x_5^post3 == 0), cost: 1 1: l2 -> l3 : y_6^0'=y_6^post1, __disjvr_0^0'=__disjvr_0^post1, x_5^0'=x_5^post1, Result_4^0'=Result_4^post1, b_7^0'=b_7^post1, (-Result_4^post1+Result_4^0 == 0 /\ -__disjvr_0^0+__disjvr_0^post1 == 0 /\ -x_5^post1+x_5^0 == 0 /\ -b_7^post1+b_7^0 == 0 /\ __disjvr_0^0-__disjvr_0^post1 == 0 /\ y_6^0-y_6^post1 == 0), cost: 1 2: l3 -> l1 : y_6^0'=y_6^post2, __disjvr_0^0'=__disjvr_0^post2, x_5^0'=x_5^post2, Result_4^0'=Result_4^post2, b_7^0'=b_7^post2, (-__disjvr_0^post2+__disjvr_0^0 == 0 /\ b_7^post2 == 0 /\ Result_4^0-Result_4^post2 == 0 /\ 1-y_6^0+y_6^post2 == 0 /\ x_5^0-x_5^post2 == 0), cost: 1 5: l1 -> l0 : y_6^0'=y_6^post5, __disjvr_0^0'=__disjvr_0^post5, x_5^0'=x_5^post5, Result_4^0'=Result_4^post5, b_7^0'=b_7^post5, (1-y_6^0+x_5^0 <= 0 /\ -1+x_5^post5-x_5^0 == 0 /\ -b_7^0 <= 0 /\ -1+b_7^post5 == 0 /\ y_6^0-y_6^post5 == 0 /\ b_7^0 <= 0 /\ -Result_4^post5+Result_4^0 == 0 /\ __disjvr_0^0-__disjvr_0^post5 == 0), cost: 1 6: l1 -> l4 : y_6^0'=y_6^post6, __disjvr_0^0'=__disjvr_0^post6, x_5^0'=x_5^post6, Result_4^0'=Result_4^post6, b_7^0'=b_7^post6, (0 == 0 /\ -b_7^post6+b_7^0 == 0 /\ x_5^0-x_5^post6 == 0 /\ y_6^0-x_5^0 <= 0 /\ y_6^0-y_6^post6 == 0 /\ __disjvr_0^0-__disjvr_0^post6 == 0), cost: 1 4: l5 -> l1 : y_6^0'=y_6^post4, __disjvr_0^0'=__disjvr_0^post4, x_5^0'=x_5^post4, Result_4^0'=Result_4^post4, b_7^0'=b_7^post4, (Result_4^0-Result_4^post4 == 0 /\ x_5^0-x_5^post4 == 0 /\ b_7^post4 == 0 /\ __disjvr_0^0-__disjvr_0^post4 == 0 /\ y_6^0-y_6^post4 == 0), cost: 1 7: l6 -> l5 : y_6^0'=y_6^post7, __disjvr_0^0'=__disjvr_0^post7, x_5^0'=x_5^post7, Result_4^0'=Result_4^post7, b_7^0'=b_7^post7, (-x_5^post7+x_5^0 == 0 /\ b_7^0-b_7^post7 == 0 /\ Result_4^0-Result_4^post7 == 0 /\ __disjvr_0^0-__disjvr_0^post7 == 0 /\ y_6^0-y_6^post7 == 0), cost: 1 Removed unreachable rules and leafs Start location: l6 0: l0 -> l2 : y_6^0'=y_6^post0, __disjvr_0^0'=__disjvr_0^post0, x_5^0'=x_5^post0, Result_4^0'=Result_4^post0, b_7^0'=b_7^post0, (-b_7^post0+b_7^0 == 0 /\ y_6^0-y_6^post0 == 0 /\ 1-y_6^0+x_5^0 <= 0 /\ Result_4^0-Result_4^post0 == 0 /\ -__disjvr_0^post0+__disjvr_0^0 == 0 /\ x_5^0-x_5^post0 == 0), cost: 1 1: l2 -> l3 : y_6^0'=y_6^post1, __disjvr_0^0'=__disjvr_0^post1, x_5^0'=x_5^post1, Result_4^0'=Result_4^post1, b_7^0'=b_7^post1, (-Result_4^post1+Result_4^0 == 0 /\ -__disjvr_0^0+__disjvr_0^post1 == 0 /\ -x_5^post1+x_5^0 == 0 /\ -b_7^post1+b_7^0 == 0 /\ __disjvr_0^0-__disjvr_0^post1 == 0 /\ y_6^0-y_6^post1 == 0), cost: 1 2: l3 -> l1 : y_6^0'=y_6^post2, __disjvr_0^0'=__disjvr_0^post2, x_5^0'=x_5^post2, Result_4^0'=Result_4^post2, b_7^0'=b_7^post2, (-__disjvr_0^post2+__disjvr_0^0 == 0 /\ b_7^post2 == 0 /\ Result_4^0-Result_4^post2 == 0 /\ 1-y_6^0+y_6^post2 == 0 /\ x_5^0-x_5^post2 == 0), cost: 1 5: l1 -> l0 : y_6^0'=y_6^post5, __disjvr_0^0'=__disjvr_0^post5, x_5^0'=x_5^post5, Result_4^0'=Result_4^post5, b_7^0'=b_7^post5, (1-y_6^0+x_5^0 <= 0 /\ -1+x_5^post5-x_5^0 == 0 /\ -b_7^0 <= 0 /\ -1+b_7^post5 == 0 /\ y_6^0-y_6^post5 == 0 /\ b_7^0 <= 0 /\ -Result_4^post5+Result_4^0 == 0 /\ __disjvr_0^0-__disjvr_0^post5 == 0), cost: 1 4: l5 -> l1 : y_6^0'=y_6^post4, __disjvr_0^0'=__disjvr_0^post4, x_5^0'=x_5^post4, Result_4^0'=Result_4^post4, b_7^0'=b_7^post4, (Result_4^0-Result_4^post4 == 0 /\ x_5^0-x_5^post4 == 0 /\ b_7^post4 == 0 /\ __disjvr_0^0-__disjvr_0^post4 == 0 /\ y_6^0-y_6^post4 == 0), cost: 1 7: l6 -> l5 : y_6^0'=y_6^post7, __disjvr_0^0'=__disjvr_0^post7, x_5^0'=x_5^post7, Result_4^0'=Result_4^post7, b_7^0'=b_7^post7, (-x_5^post7+x_5^0 == 0 /\ b_7^0-b_7^post7 == 0 /\ Result_4^0-Result_4^post7 == 0 /\ __disjvr_0^0-__disjvr_0^post7 == 0 /\ y_6^0-y_6^post7 == 0), cost: 1 Applied preprocessing Original rule: l0 -> l2 : y_6^0'=y_6^post0, __disjvr_0^0'=__disjvr_0^post0, x_5^0'=x_5^post0, Result_4^0'=Result_4^post0, b_7^0'=b_7^post0, (-b_7^post0+b_7^0 == 0 /\ y_6^0-y_6^post0 == 0 /\ 1-y_6^0+x_5^0 <= 0 /\ Result_4^0-Result_4^post0 == 0 /\ -__disjvr_0^post0+__disjvr_0^0 == 0 /\ x_5^0-x_5^post0 == 0), cost: 1 New rule: l0 -> l2 : 1-y_6^0+x_5^0 <= 0, cost: 1 Applied preprocessing Original rule: l2 -> l3 : y_6^0'=y_6^post1, __disjvr_0^0'=__disjvr_0^post1, x_5^0'=x_5^post1, Result_4^0'=Result_4^post1, b_7^0'=b_7^post1, (-Result_4^post1+Result_4^0 == 0 /\ -__disjvr_0^0+__disjvr_0^post1 == 0 /\ -x_5^post1+x_5^0 == 0 /\ -b_7^post1+b_7^0 == 0 /\ __disjvr_0^0-__disjvr_0^post1 == 0 /\ y_6^0-y_6^post1 == 0), cost: 1 New rule: l2 -> l3 : 0 == 0, cost: 1 Applied preprocessing Original rule: l3 -> l1 : y_6^0'=y_6^post2, __disjvr_0^0'=__disjvr_0^post2, x_5^0'=x_5^post2, Result_4^0'=Result_4^post2, b_7^0'=b_7^post2, (-__disjvr_0^post2+__disjvr_0^0 == 0 /\ b_7^post2 == 0 /\ Result_4^0-Result_4^post2 == 0 /\ 1-y_6^0+y_6^post2 == 0 /\ x_5^0-x_5^post2 == 0), cost: 1 New rule: l3 -> l1 : y_6^0'=-1+y_6^0, b_7^0'=0, TRUE, cost: 1 Applied preprocessing Original rule: l5 -> l1 : y_6^0'=y_6^post4, __disjvr_0^0'=__disjvr_0^post4, x_5^0'=x_5^post4, Result_4^0'=Result_4^post4, b_7^0'=b_7^post4, (Result_4^0-Result_4^post4 == 0 /\ x_5^0-x_5^post4 == 0 /\ b_7^post4 == 0 /\ __disjvr_0^0-__disjvr_0^post4 == 0 /\ y_6^0-y_6^post4 == 0), cost: 1 New rule: l5 -> l1 : b_7^0'=0, TRUE, cost: 1 Applied preprocessing Original rule: l1 -> l0 : y_6^0'=y_6^post5, __disjvr_0^0'=__disjvr_0^post5, x_5^0'=x_5^post5, Result_4^0'=Result_4^post5, b_7^0'=b_7^post5, (1-y_6^0+x_5^0 <= 0 /\ -1+x_5^post5-x_5^0 == 0 /\ -b_7^0 <= 0 /\ -1+b_7^post5 == 0 /\ y_6^0-y_6^post5 == 0 /\ b_7^0 <= 0 /\ -Result_4^post5+Result_4^0 == 0 /\ __disjvr_0^0-__disjvr_0^post5 == 0), cost: 1 New rule: l1 -> l0 : x_5^0'=1+x_5^0, b_7^0'=1, (1-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 1 Applied preprocessing Original rule: l6 -> l5 : y_6^0'=y_6^post7, __disjvr_0^0'=__disjvr_0^post7, x_5^0'=x_5^post7, Result_4^0'=Result_4^post7, b_7^0'=b_7^post7, (-x_5^post7+x_5^0 == 0 /\ b_7^0-b_7^post7 == 0 /\ Result_4^0-Result_4^post7 == 0 /\ __disjvr_0^0-__disjvr_0^post7 == 0 /\ y_6^0-y_6^post7 == 0), cost: 1 New rule: l6 -> l5 : TRUE, cost: 1 Simplified rules Start location: l6 8: l0 -> l2 : 1-y_6^0+x_5^0 <= 0, cost: 1 9: l2 -> l3 : 0 == 0, cost: 1 10: l3 -> l1 : y_6^0'=-1+y_6^0, b_7^0'=0, TRUE, cost: 1 12: l1 -> l0 : x_5^0'=1+x_5^0, b_7^0'=1, (1-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 1 11: l5 -> l1 : b_7^0'=0, TRUE, cost: 1 13: l6 -> l5 : TRUE, cost: 1 Eliminating location l5 by chaining: Applied chaining First rule: l6 -> l5 : TRUE, cost: 1 Second rule: l5 -> l1 : b_7^0'=0, TRUE, cost: 1 New rule: l6 -> l1 : b_7^0'=0, TRUE, cost: 2 Applied deletion Removed the following rules: 11 13 Eliminating location l0 by chaining: Applied chaining First rule: l1 -> l0 : x_5^0'=1+x_5^0, b_7^0'=1, (1-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 1 Second rule: l0 -> l2 : 1-y_6^0+x_5^0 <= 0, cost: 1 New rule: l1 -> l2 : x_5^0'=1+x_5^0, b_7^0'=1, (1-y_6^0+x_5^0 <= 0 /\ 2-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 2 Applied simplification Original rule: l1 -> l2 : x_5^0'=1+x_5^0, b_7^0'=1, (1-y_6^0+x_5^0 <= 0 /\ 2-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 2 New rule: l1 -> l2 : x_5^0'=1+x_5^0, b_7^0'=1, (2-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 2 Applied deletion Removed the following rules: 8 12 Eliminating location l2 by chaining: Applied chaining First rule: l1 -> l2 : x_5^0'=1+x_5^0, b_7^0'=1, (2-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 2 Second rule: l2 -> l3 : 0 == 0, cost: 1 New rule: l1 -> l3 : x_5^0'=1+x_5^0, b_7^0'=1, (0 == 0 /\ 2-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 3 Applied simplification Original rule: l1 -> l3 : x_5^0'=1+x_5^0, b_7^0'=1, (0 == 0 /\ 2-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 3 New rule: l1 -> l3 : x_5^0'=1+x_5^0, b_7^0'=1, (2-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 3 Applied deletion Removed the following rules: 9 15 Eliminating location l3 by chaining: Applied chaining First rule: l1 -> l3 : x_5^0'=1+x_5^0, b_7^0'=1, (2-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 3 Second rule: l3 -> l1 : y_6^0'=-1+y_6^0, b_7^0'=0, TRUE, cost: 1 New rule: l1 -> l1 : y_6^0'=-1+y_6^0, x_5^0'=1+x_5^0, b_7^0'=0, (2-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 4 Applied deletion Removed the following rules: 10 16 Eliminated locations on linear paths Start location: l6 17: l1 -> l1 : y_6^0'=-1+y_6^0, x_5^0'=1+x_5^0, b_7^0'=0, (2-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 4 14: l6 -> l1 : b_7^0'=0, TRUE, cost: 2 Applied acceleration Original rule: l1 -> l1 : y_6^0'=-1+y_6^0, x_5^0'=1+x_5^0, b_7^0'=0, (2-y_6^0+x_5^0 <= 0 /\ b_7^0 == 0), cost: 4 New rule: l1 -> l1 : y_6^0'=y_6^0-n, x_5^0'=n+x_5^0, b_7^0'=0, (-b_7^0 >= 0 /\ b_7^0 >= 0 /\ -1+n >= 0 /\ y_6^0-2*n-x_5^0 >= 0), cost: 4*n Sub-proof via acceration calculus written to file:///tmp/tmpnam_djaHCH.txt Applied simplification Original rule: l1 -> l1 : y_6^0'=y_6^0-n, x_5^0'=n+x_5^0, b_7^0'=0, (-b_7^0 >= 0 /\ b_7^0 >= 0 /\ -1+n >= 0 /\ y_6^0-2*n-x_5^0 >= 0), cost: 4*n New rule: l1 -> l1 : y_6^0'=y_6^0-n, x_5^0'=n+x_5^0, b_7^0'=0, (b_7^0 <= 0 /\ b_7^0 >= 0 /\ -1+n >= 0 /\ y_6^0-2*n-x_5^0 >= 0), cost: 4*n Applied deletion Removed the following rules: 17 Accelerated simple loops Start location: l6 19: l1 -> l1 : y_6^0'=y_6^0-n, x_5^0'=n+x_5^0, b_7^0'=0, (b_7^0 <= 0 /\ b_7^0 >= 0 /\ -1+n >= 0 /\ y_6^0-2*n-x_5^0 >= 0), cost: 4*n 14: l6 -> l1 : b_7^0'=0, TRUE, cost: 2 Applied chaining First rule: l6 -> l1 : b_7^0'=0, TRUE, cost: 2 Second rule: l1 -> l1 : y_6^0'=y_6^0-n, x_5^0'=n+x_5^0, b_7^0'=0, (b_7^0 <= 0 /\ b_7^0 >= 0 /\ -1+n >= 0 /\ y_6^0-2*n-x_5^0 >= 0), cost: 4*n New rule: l6 -> l1 : y_6^0'=y_6^0-n, x_5^0'=n+x_5^0, b_7^0'=0, (-1+n >= 0 /\ y_6^0-2*n-x_5^0 >= 0), cost: 2+4*n Applied deletion Removed the following rules: 19 Chained accelerated rules with incoming rules Start location: l6 14: l6 -> l1 : b_7^0'=0, TRUE, cost: 2 20: l6 -> l1 : y_6^0'=y_6^0-n, x_5^0'=n+x_5^0, b_7^0'=0, (-1+n >= 0 /\ y_6^0-2*n-x_5^0 >= 0), cost: 2+4*n Removed unreachable locations and irrelevant leafs Start location: l6 Computing asymptotic complexity Proved the following lower bound Complexity: Unknown Cpx degree: ? Solved cost: 0 Rule cost: 0