WORST_CASE(Omega(0),?) Initial ITS Start location: l5 0: l0 -> l1 : x_5^0'=x_5^post0, Result_4^0'=Result_4^post0, (-Result_4^post0+Result_4^0 == 0 /\ 1-x_5^0 <= 0 /\ 1+x_5^post0-x_5^0 == 0), cost: 1 2: l0 -> l2 : x_5^0'=x_5^post2, Result_4^0'=Result_4^post2, (0 == 0 /\ x_5^0 <= 0 /\ x_5^0-x_5^post2 == 0), cost: 1 1: l1 -> l0 : x_5^0'=x_5^post1, Result_4^0'=Result_4^post1, (Result_4^0-Result_4^post1 == 0 /\ x_5^0-x_5^post1 == 0), cost: 1 3: l3 -> l0 : x_5^0'=x_5^post3, Result_4^0'=Result_4^post3, (-Result_4^post3+Result_4^0 == 0 /\ 1-x_5^0 <= 0 /\ 1-x_5^0+x_5^post3 == 0), cost: 1 4: l3 -> l2 : x_5^0'=x_5^post4, Result_4^0'=Result_4^post4, (0 == 0 /\ x_5^0 <= 0 /\ x_5^0-x_5^post4 == 0), cost: 1 5: l4 -> l3 : x_5^0'=x_5^post5, Result_4^0'=Result_4^post5, (Result_4^0-Result_4^post5 == 0 /\ x_5^0-x_5^post5 == 0), cost: 1 6: l5 -> l4 : x_5^0'=x_5^post6, Result_4^0'=Result_4^post6, (-Result_4^post6+Result_4^0 == 0 /\ -x_5^post6+x_5^0 == 0), cost: 1 Removed unreachable rules and leafs Start location: l5 0: l0 -> l1 : x_5^0'=x_5^post0, Result_4^0'=Result_4^post0, (-Result_4^post0+Result_4^0 == 0 /\ 1-x_5^0 <= 0 /\ 1+x_5^post0-x_5^0 == 0), cost: 1 1: l1 -> l0 : x_5^0'=x_5^post1, Result_4^0'=Result_4^post1, (Result_4^0-Result_4^post1 == 0 /\ x_5^0-x_5^post1 == 0), cost: 1 3: l3 -> l0 : x_5^0'=x_5^post3, Result_4^0'=Result_4^post3, (-Result_4^post3+Result_4^0 == 0 /\ 1-x_5^0 <= 0 /\ 1-x_5^0+x_5^post3 == 0), cost: 1 5: l4 -> l3 : x_5^0'=x_5^post5, Result_4^0'=Result_4^post5, (Result_4^0-Result_4^post5 == 0 /\ x_5^0-x_5^post5 == 0), cost: 1 6: l5 -> l4 : x_5^0'=x_5^post6, Result_4^0'=Result_4^post6, (-Result_4^post6+Result_4^0 == 0 /\ -x_5^post6+x_5^0 == 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : x_5^0'=x_5^post0, Result_4^0'=Result_4^post0, (-Result_4^post0+Result_4^0 == 0 /\ 1-x_5^0 <= 0 /\ 1+x_5^post0-x_5^0 == 0), cost: 1 New rule: l0 -> l1 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 1 Applied preprocessing Original rule: l1 -> l0 : x_5^0'=x_5^post1, Result_4^0'=Result_4^post1, (Result_4^0-Result_4^post1 == 0 /\ x_5^0-x_5^post1 == 0), cost: 1 New rule: l1 -> l0 : TRUE, cost: 1 Applied preprocessing Original rule: l3 -> l0 : x_5^0'=x_5^post3, Result_4^0'=Result_4^post3, (-Result_4^post3+Result_4^0 == 0 /\ 1-x_5^0 <= 0 /\ 1-x_5^0+x_5^post3 == 0), cost: 1 New rule: l3 -> l0 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 1 Applied preprocessing Original rule: l4 -> l3 : x_5^0'=x_5^post5, Result_4^0'=Result_4^post5, (Result_4^0-Result_4^post5 == 0 /\ x_5^0-x_5^post5 == 0), cost: 1 New rule: l4 -> l3 : TRUE, cost: 1 Applied preprocessing Original rule: l5 -> l4 : x_5^0'=x_5^post6, Result_4^0'=Result_4^post6, (-Result_4^post6+Result_4^0 == 0 /\ -x_5^post6+x_5^0 == 0), cost: 1 New rule: l5 -> l4 : TRUE, cost: 1 Simplified rules Start location: l5 7: l0 -> l1 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 1 8: l1 -> l0 : TRUE, cost: 1 9: l3 -> l0 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 1 10: l4 -> l3 : TRUE, cost: 1 11: l5 -> l4 : TRUE, cost: 1 Eliminating location l4 by chaining: Applied chaining First rule: l5 -> l4 : TRUE, cost: 1 Second rule: l4 -> l3 : TRUE, cost: 1 New rule: l5 -> l3 : TRUE, cost: 2 Applied deletion Removed the following rules: 10 11 Eliminating location l3 by chaining: Applied chaining First rule: l5 -> l3 : TRUE, cost: 2 Second rule: l3 -> l0 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 1 New rule: l5 -> l0 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 3 Applied deletion Removed the following rules: 9 12 Eliminating location l1 by chaining: Applied chaining First rule: l0 -> l1 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 1 Second rule: l1 -> l0 : TRUE, cost: 1 New rule: l0 -> l0 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 2 Applied deletion Removed the following rules: 7 8 Eliminated locations on linear paths Start location: l5 14: l0 -> l0 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 2 13: l5 -> l0 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 3 Applied acceleration Original rule: l0 -> l0 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 2 New rule: l0 -> l0 : x_5^0'=x_5^0-n, (x_5^0-n >= 0 /\ n >= 0), cost: 2*n Sub-proof via acceration calculus written to file:///tmp/tmpnam_gElhCo.txt Applied instantiation Original rule: l0 -> l0 : x_5^0'=x_5^0-n, (x_5^0-n >= 0 /\ n >= 0), cost: 2*n New rule: l0 -> l0 : x_5^0'=0, (0 >= 0 /\ x_5^0 >= 0), cost: 2*x_5^0 Applied simplification Original rule: l0 -> l0 : x_5^0'=0, (0 >= 0 /\ x_5^0 >= 0), cost: 2*x_5^0 New rule: l0 -> l0 : x_5^0'=0, x_5^0 >= 0, cost: 2*x_5^0 Applied deletion Removed the following rules: 14 Accelerated simple loops Start location: l5 16: l0 -> l0 : x_5^0'=0, x_5^0 >= 0, cost: 2*x_5^0 13: l5 -> l0 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 3 Applied chaining First rule: l5 -> l0 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 3 Second rule: l0 -> l0 : x_5^0'=0, x_5^0 >= 0, cost: 2*x_5^0 New rule: l5 -> l0 : x_5^0'=0, -1+x_5^0 >= 0, cost: 1+2*x_5^0 Applied deletion Removed the following rules: 16 Chained accelerated rules with incoming rules Start location: l5 13: l5 -> l0 : x_5^0'=-1+x_5^0, -1+x_5^0 >= 0, cost: 3 17: l5 -> l0 : x_5^0'=0, -1+x_5^0 >= 0, cost: 1+2*x_5^0 Removed unreachable locations and irrelevant leafs Start location: l5 Computing asymptotic complexity Proved the following lower bound Complexity: Unknown Cpx degree: ? Solved cost: 0 Rule cost: 0