WORST_CASE(Omega(0),?) Initial ITS Start location: l3 0: l0 -> l1 : p^0'=p^post0, c^0'=c^post0, s^0'=s^post0, (1+p^0-c^0 <= 0 /\ p^post0-s^0 == 0 /\ -1-s^0+s^post0 == 0 /\ c^0-c^post0 == 0), cost: 1 1: l1 -> l0 : p^0'=p^post1, c^0'=c^post1, s^0'=s^post1, (s^0-s^post1 == 0 /\ c^0-c^post1 == 0 /\ p^0-p^post1 == 0), cost: 1 2: l2 -> l0 : p^0'=p^post2, c^0'=c^post2, s^0'=s^post2, (-1+s^post2 == 0 /\ -1+p^post2 == 0 /\ -c^post2+c^0 == 0), cost: 1 3: l3 -> l2 : p^0'=p^post3, c^0'=c^post3, s^0'=s^post3, (-c^post3+c^0 == 0 /\ -p^post3+p^0 == 0 /\ -s^post3+s^0 == 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : p^0'=p^post0, c^0'=c^post0, s^0'=s^post0, (1+p^0-c^0 <= 0 /\ p^post0-s^0 == 0 /\ -1-s^0+s^post0 == 0 /\ c^0-c^post0 == 0), cost: 1 New rule: l0 -> l1 : p^0'=s^0, s^0'=1+s^0, 1+p^0-c^0 <= 0, cost: 1 Applied preprocessing Original rule: l1 -> l0 : p^0'=p^post1, c^0'=c^post1, s^0'=s^post1, (s^0-s^post1 == 0 /\ c^0-c^post1 == 0 /\ p^0-p^post1 == 0), cost: 1 New rule: l1 -> l0 : TRUE, cost: 1 Applied preprocessing Original rule: l2 -> l0 : p^0'=p^post2, c^0'=c^post2, s^0'=s^post2, (-1+s^post2 == 0 /\ -1+p^post2 == 0 /\ -c^post2+c^0 == 0), cost: 1 New rule: l2 -> l0 : p^0'=1, s^0'=1, TRUE, cost: 1 Applied preprocessing Original rule: l3 -> l2 : p^0'=p^post3, c^0'=c^post3, s^0'=s^post3, (-c^post3+c^0 == 0 /\ -p^post3+p^0 == 0 /\ -s^post3+s^0 == 0), cost: 1 New rule: l3 -> l2 : TRUE, cost: 1 Simplified rules Start location: l3 4: l0 -> l1 : p^0'=s^0, s^0'=1+s^0, 1+p^0-c^0 <= 0, cost: 1 5: l1 -> l0 : TRUE, cost: 1 6: l2 -> l0 : p^0'=1, s^0'=1, TRUE, cost: 1 7: l3 -> l2 : TRUE, cost: 1 Eliminating location l2 by chaining: Applied chaining First rule: l3 -> l2 : TRUE, cost: 1 Second rule: l2 -> l0 : p^0'=1, s^0'=1, TRUE, cost: 1 New rule: l3 -> l0 : p^0'=1, s^0'=1, TRUE, cost: 2 Applied deletion Removed the following rules: 6 7 Eliminating location l1 by chaining: Applied chaining First rule: l0 -> l1 : p^0'=s^0, s^0'=1+s^0, 1+p^0-c^0 <= 0, cost: 1 Second rule: l1 -> l0 : TRUE, cost: 1 New rule: l0 -> l0 : p^0'=s^0, s^0'=1+s^0, 1+p^0-c^0 <= 0, cost: 2 Applied deletion Removed the following rules: 4 5 Eliminated locations on linear paths Start location: l3 9: l0 -> l0 : p^0'=s^0, s^0'=1+s^0, 1+p^0-c^0 <= 0, cost: 2 8: l3 -> l0 : p^0'=1, s^0'=1, TRUE, cost: 2 Applied acceleration Original rule: l0 -> l0 : p^0'=s^0, s^0'=1+s^0, 1+p^0-c^0 <= 0, cost: 2 New rule: l0 -> l0 : p^0'=-1+n+s^0, s^0'=n+s^0, (1-n+c^0-s^0 >= 0 /\ -1-p^0+c^0 >= 0 /\ -1+n >= 0), cost: 2*n Sub-proof via acceration calculus written to file:///tmp/tmpnam_anfKBP.txt Applied instantiation Original rule: l0 -> l0 : p^0'=-1+n+s^0, s^0'=n+s^0, (1-n+c^0-s^0 >= 0 /\ -1-p^0+c^0 >= 0 /\ -1+n >= 0), cost: 2*n New rule: l0 -> l0 : p^0'=c^0, s^0'=1+c^0, (0 >= 0 /\ c^0-s^0 >= 0 /\ -1-p^0+c^0 >= 0), cost: 2+2*c^0-2*s^0 Applied simplification Original rule: l0 -> l0 : p^0'=c^0, s^0'=1+c^0, (0 >= 0 /\ c^0-s^0 >= 0 /\ -1-p^0+c^0 >= 0), cost: 2+2*c^0-2*s^0 New rule: l0 -> l0 : p^0'=c^0, s^0'=1+c^0, (c^0-s^0 >= 0 /\ -1-p^0+c^0 >= 0), cost: 2+2*c^0-2*s^0 Applied deletion Removed the following rules: 9 Accelerated simple loops Start location: l3 11: l0 -> l0 : p^0'=c^0, s^0'=1+c^0, (c^0-s^0 >= 0 /\ -1-p^0+c^0 >= 0), cost: 2+2*c^0-2*s^0 8: l3 -> l0 : p^0'=1, s^0'=1, TRUE, cost: 2 Applied chaining First rule: l3 -> l0 : p^0'=1, s^0'=1, TRUE, cost: 2 Second rule: l0 -> l0 : p^0'=c^0, s^0'=1+c^0, (c^0-s^0 >= 0 /\ -1-p^0+c^0 >= 0), cost: 2+2*c^0-2*s^0 New rule: l3 -> l0 : p^0'=c^0, s^0'=1+c^0, -2+c^0 >= 0, cost: 2+2*c^0 Applied deletion Removed the following rules: 11 Chained accelerated rules with incoming rules Start location: l3 8: l3 -> l0 : p^0'=1, s^0'=1, TRUE, cost: 2 12: l3 -> l0 : p^0'=c^0, s^0'=1+c^0, -2+c^0 >= 0, cost: 2+2*c^0 Removed unreachable locations and irrelevant leafs Start location: l3 Computing asymptotic complexity Proved the following lower bound Complexity: Unknown Cpx degree: ? Solved cost: 0 Rule cost: 0