WORST_CASE(Omega(0),?) Initial ITS Start location: l4 0: l0 -> l1 : __disjvr_1^0'=__disjvr_1^post0, y^0'=y^post0, __disjvr_0^0'=__disjvr_0^post0, x^0'=x^post0, (-y^0-x^0 <= 0 /\ y^0-y^post0 == 0 /\ __disjvr_1^0-__disjvr_1^post0 == 0 /\ __disjvr_0^0-__disjvr_0^post0 == 0 /\ 1-y^0+x^0 <= 0 /\ -1-x^0+x^post0 == 0), cost: 1 1: l0 -> l1 : __disjvr_1^0'=__disjvr_1^post1, y^0'=y^post1, __disjvr_0^0'=__disjvr_0^post1, x^0'=x^post1, (__disjvr_0^0-__disjvr_0^post1 == 0 /\ -1-y^0+y^post1 == 0 /\ 1+y^0+x^0 <= 0 /\ __disjvr_1^0-__disjvr_1^post1 == 0 /\ -x^post1+x^0 == 0 /\ -y^0+x^0 <= 0), cost: 1 2: l0 -> l1 : __disjvr_1^0'=__disjvr_1^post2, y^0'=y^post2, __disjvr_0^0'=__disjvr_0^post2, x^0'=x^post2, (-y^post2+y^0 == 0 /\ __disjvr_1^0-__disjvr_1^post2 == 0 /\ -__disjvr_0^post2+__disjvr_0^0 == 0 /\ 1+x^post2-x^0 == 0 /\ 1+y^0-x^0 <= 0 /\ -1+y^0+x^0 <= 0), cost: 1 3: l0 -> l1 : __disjvr_1^0'=__disjvr_1^post3, y^0'=y^post3, __disjvr_0^0'=__disjvr_0^post3, x^0'=x^post3, (-__disjvr_0^post3+__disjvr_0^0 == 0 /\ -x^post3+x^0 == 0 /\ 2-y^0-x^0 <= 0 /\ __disjvr_1^0-__disjvr_1^post3 == 0 /\ y^0-x^0 <= 0 /\ 1+y^post3-y^0 == 0), cost: 1 4: l1 -> l2 : __disjvr_1^0'=__disjvr_1^post4, y^0'=y^post4, __disjvr_0^0'=__disjvr_0^post4, x^0'=x^post4, (-__disjvr_0^post4+__disjvr_0^0 == 0 /\ __disjvr_0^post4-__disjvr_0^0 == 0 /\ -x^post4+x^0 == 0 /\ -y^post4+y^0 == 0 /\ -__disjvr_1^post4+__disjvr_1^0 == 0), cost: 1 5: l2 -> l0 : __disjvr_1^0'=__disjvr_1^post5, y^0'=y^post5, __disjvr_0^0'=__disjvr_0^post5, x^0'=x^post5, (y^0-y^post5 == 0 /\ x^0-x^post5 == 0 /\ __disjvr_1^0-__disjvr_1^post5 == 0 /\ __disjvr_0^0-__disjvr_0^post5 == 0 /\ -__disjvr_1^0+__disjvr_1^post5 == 0), cost: 1 6: l3 -> l1 : __disjvr_1^0'=__disjvr_1^post6, y^0'=y^post6, __disjvr_0^0'=__disjvr_0^post6, x^0'=x^post6, (__disjvr_1^0-__disjvr_1^post6 == 0 /\ __disjvr_0^0-__disjvr_0^post6 == 0 /\ y^0-y^post6 == 0 /\ -x^post6+x^0 == 0), cost: 1 7: l4 -> l3 : __disjvr_1^0'=__disjvr_1^post7, y^0'=y^post7, __disjvr_0^0'=__disjvr_0^post7, x^0'=x^post7, (-x^post7+x^0 == 0 /\ -__disjvr_0^post7+__disjvr_0^0 == 0 /\ -y^post7+y^0 == 0 /\ __disjvr_1^0-__disjvr_1^post7 == 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : __disjvr_1^0'=__disjvr_1^post0, y^0'=y^post0, __disjvr_0^0'=__disjvr_0^post0, x^0'=x^post0, (-y^0-x^0 <= 0 /\ y^0-y^post0 == 0 /\ __disjvr_1^0-__disjvr_1^post0 == 0 /\ __disjvr_0^0-__disjvr_0^post0 == 0 /\ 1-y^0+x^0 <= 0 /\ -1-x^0+x^post0 == 0), cost: 1 New rule: l0 -> l1 : x^0'=1+x^0, (-y^0-x^0 <= 0 /\ 1-y^0+x^0 <= 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : __disjvr_1^0'=__disjvr_1^post1, y^0'=y^post1, __disjvr_0^0'=__disjvr_0^post1, x^0'=x^post1, (__disjvr_0^0-__disjvr_0^post1 == 0 /\ -1-y^0+y^post1 == 0 /\ 1+y^0+x^0 <= 0 /\ __disjvr_1^0-__disjvr_1^post1 == 0 /\ -x^post1+x^0 == 0 /\ -y^0+x^0 <= 0), cost: 1 New rule: l0 -> l1 : y^0'=1+y^0, (1+y^0+x^0 <= 0 /\ -y^0+x^0 <= 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : __disjvr_1^0'=__disjvr_1^post2, y^0'=y^post2, __disjvr_0^0'=__disjvr_0^post2, x^0'=x^post2, (-y^post2+y^0 == 0 /\ __disjvr_1^0-__disjvr_1^post2 == 0 /\ -__disjvr_0^post2+__disjvr_0^0 == 0 /\ 1+x^post2-x^0 == 0 /\ 1+y^0-x^0 <= 0 /\ -1+y^0+x^0 <= 0), cost: 1 New rule: l0 -> l1 : x^0'=-1+x^0, (1+y^0-x^0 <= 0 /\ -1+y^0+x^0 <= 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : __disjvr_1^0'=__disjvr_1^post3, y^0'=y^post3, __disjvr_0^0'=__disjvr_0^post3, x^0'=x^post3, (-__disjvr_0^post3+__disjvr_0^0 == 0 /\ -x^post3+x^0 == 0 /\ 2-y^0-x^0 <= 0 /\ __disjvr_1^0-__disjvr_1^post3 == 0 /\ y^0-x^0 <= 0 /\ 1+y^post3-y^0 == 0), cost: 1 New rule: l0 -> l1 : y^0'=-1+y^0, (2-y^0-x^0 <= 0 /\ y^0-x^0 <= 0), cost: 1 Applied preprocessing Original rule: l1 -> l2 : __disjvr_1^0'=__disjvr_1^post4, y^0'=y^post4, __disjvr_0^0'=__disjvr_0^post4, x^0'=x^post4, (-__disjvr_0^post4+__disjvr_0^0 == 0 /\ __disjvr_0^post4-__disjvr_0^0 == 0 /\ -x^post4+x^0 == 0 /\ -y^post4+y^0 == 0 /\ -__disjvr_1^post4+__disjvr_1^0 == 0), cost: 1 New rule: l1 -> l2 : 0 == 0, cost: 1 Applied preprocessing Original rule: l2 -> l0 : __disjvr_1^0'=__disjvr_1^post5, y^0'=y^post5, __disjvr_0^0'=__disjvr_0^post5, x^0'=x^post5, (y^0-y^post5 == 0 /\ x^0-x^post5 == 0 /\ __disjvr_1^0-__disjvr_1^post5 == 0 /\ __disjvr_0^0-__disjvr_0^post5 == 0 /\ -__disjvr_1^0+__disjvr_1^post5 == 0), cost: 1 New rule: l2 -> l0 : 0 == 0, cost: 1 Applied preprocessing Original rule: l3 -> l1 : __disjvr_1^0'=__disjvr_1^post6, y^0'=y^post6, __disjvr_0^0'=__disjvr_0^post6, x^0'=x^post6, (__disjvr_1^0-__disjvr_1^post6 == 0 /\ __disjvr_0^0-__disjvr_0^post6 == 0 /\ y^0-y^post6 == 0 /\ -x^post6+x^0 == 0), cost: 1 New rule: l3 -> l1 : TRUE, cost: 1 Applied preprocessing Original rule: l4 -> l3 : __disjvr_1^0'=__disjvr_1^post7, y^0'=y^post7, __disjvr_0^0'=__disjvr_0^post7, x^0'=x^post7, (-x^post7+x^0 == 0 /\ -__disjvr_0^post7+__disjvr_0^0 == 0 /\ -y^post7+y^0 == 0 /\ __disjvr_1^0-__disjvr_1^post7 == 0), cost: 1 New rule: l4 -> l3 : TRUE, cost: 1 Simplified rules Start location: l4 8: l0 -> l1 : x^0'=1+x^0, (-y^0-x^0 <= 0 /\ 1-y^0+x^0 <= 0), cost: 1 9: l0 -> l1 : y^0'=1+y^0, (1+y^0+x^0 <= 0 /\ -y^0+x^0 <= 0), cost: 1 10: l0 -> l1 : x^0'=-1+x^0, (1+y^0-x^0 <= 0 /\ -1+y^0+x^0 <= 0), cost: 1 11: l0 -> l1 : y^0'=-1+y^0, (2-y^0-x^0 <= 0 /\ y^0-x^0 <= 0), cost: 1 12: l1 -> l2 : 0 == 0, cost: 1 13: l2 -> l0 : 0 == 0, cost: 1 14: l3 -> l1 : TRUE, cost: 1 15: l4 -> l3 : TRUE, cost: 1 Eliminating location l3 by chaining: Applied chaining First rule: l4 -> l3 : TRUE, cost: 1 Second rule: l3 -> l1 : TRUE, cost: 1 New rule: l4 -> l1 : TRUE, cost: 2 Applied deletion Removed the following rules: 14 15 Eliminating location l2 by chaining: Applied chaining First rule: l1 -> l2 : 0 == 0, cost: 1 Second rule: l2 -> l0 : 0 == 0, cost: 1 New rule: l1 -> l0 : 0 == 0, cost: 2 Applied deletion Removed the following rules: 12 13 Eliminated locations on linear paths Start location: l4 8: l0 -> l1 : x^0'=1+x^0, (-y^0-x^0 <= 0 /\ 1-y^0+x^0 <= 0), cost: 1 9: l0 -> l1 : y^0'=1+y^0, (1+y^0+x^0 <= 0 /\ -y^0+x^0 <= 0), cost: 1 10: l0 -> l1 : x^0'=-1+x^0, (1+y^0-x^0 <= 0 /\ -1+y^0+x^0 <= 0), cost: 1 11: l0 -> l1 : y^0'=-1+y^0, (2-y^0-x^0 <= 0 /\ y^0-x^0 <= 0), cost: 1 17: l1 -> l0 : 0 == 0, cost: 2 16: l4 -> l1 : TRUE, cost: 2 Eliminating location l0 by chaining: Applied chaining First rule: l1 -> l0 : 0 == 0, cost: 2 Second rule: l0 -> l1 : x^0'=1+x^0, (-y^0-x^0 <= 0 /\ 1-y^0+x^0 <= 0), cost: 1 New rule: l1 -> l1 : x^0'=1+x^0, (0 == 0 /\ -y^0-x^0 <= 0 /\ 1-y^0+x^0 <= 0), cost: 3 Applied simplification Original rule: l1 -> l1 : x^0'=1+x^0, (0 == 0 /\ -y^0-x^0 <= 0 /\ 1-y^0+x^0 <= 0), cost: 3 New rule: l1 -> l1 : x^0'=1+x^0, (-y^0-x^0 <= 0 /\ 1-y^0+x^0 <= 0), cost: 3 Applied chaining First rule: l1 -> l0 : 0 == 0, cost: 2 Second rule: l0 -> l1 : y^0'=1+y^0, (1+y^0+x^0 <= 0 /\ -y^0+x^0 <= 0), cost: 1 New rule: l1 -> l1 : y^0'=1+y^0, (0 == 0 /\ 1+y^0+x^0 <= 0 /\ -y^0+x^0 <= 0), cost: 3 Applied simplification Original rule: l1 -> l1 : y^0'=1+y^0, (0 == 0 /\ 1+y^0+x^0 <= 0 /\ -y^0+x^0 <= 0), cost: 3 New rule: l1 -> l1 : y^0'=1+y^0, (1+y^0+x^0 <= 0 /\ -y^0+x^0 <= 0), cost: 3 Applied chaining First rule: l1 -> l0 : 0 == 0, cost: 2 Second rule: l0 -> l1 : x^0'=-1+x^0, (1+y^0-x^0 <= 0 /\ -1+y^0+x^0 <= 0), cost: 1 New rule: l1 -> l1 : x^0'=-1+x^0, (0 == 0 /\ 1+y^0-x^0 <= 0 /\ -1+y^0+x^0 <= 0), cost: 3 Applied simplification Original rule: l1 -> l1 : x^0'=-1+x^0, (0 == 0 /\ 1+y^0-x^0 <= 0 /\ -1+y^0+x^0 <= 0), cost: 3 New rule: l1 -> l1 : x^0'=-1+x^0, (1+y^0-x^0 <= 0 /\ -1+y^0+x^0 <= 0), cost: 3 Applied chaining First rule: l1 -> l0 : 0 == 0, cost: 2 Second rule: l0 -> l1 : y^0'=-1+y^0, (2-y^0-x^0 <= 0 /\ y^0-x^0 <= 0), cost: 1 New rule: l1 -> l1 : y^0'=-1+y^0, (0 == 0 /\ 2-y^0-x^0 <= 0 /\ y^0-x^0 <= 0), cost: 3 Applied simplification Original rule: l1 -> l1 : y^0'=-1+y^0, (0 == 0 /\ 2-y^0-x^0 <= 0 /\ y^0-x^0 <= 0), cost: 3 New rule: l1 -> l1 : y^0'=-1+y^0, (2-y^0-x^0 <= 0 /\ y^0-x^0 <= 0), cost: 3 Applied deletion Removed the following rules: 8 9 10 11 17 Eliminated locations on tree-shaped paths Start location: l4 18: l1 -> l1 : x^0'=1+x^0, (-y^0-x^0 <= 0 /\ 1-y^0+x^0 <= 0), cost: 3 19: l1 -> l1 : y^0'=1+y^0, (1+y^0+x^0 <= 0 /\ -y^0+x^0 <= 0), cost: 3 20: l1 -> l1 : x^0'=-1+x^0, (1+y^0-x^0 <= 0 /\ -1+y^0+x^0 <= 0), cost: 3 21: l1 -> l1 : y^0'=-1+y^0, (2-y^0-x^0 <= 0 /\ y^0-x^0 <= 0), cost: 3 16: l4 -> l1 : TRUE, cost: 2 Applied acceleration Original rule: l1 -> l1 : x^0'=1+x^0, (-y^0-x^0 <= 0 /\ 1-y^0+x^0 <= 0), cost: 3 New rule: l1 -> l1 : x^0'=n+x^0, (y^0-n-x^0 >= 0 /\ y^0+x^0 >= 0 /\ n >= 0), cost: 3*n Sub-proof via acceration calculus written to file:///tmp/tmpnam_jlgLGp.txt Applied instantiation Original rule: l1 -> l1 : x^0'=n+x^0, (y^0-n-x^0 >= 0 /\ y^0+x^0 >= 0 /\ n >= 0), cost: 3*n New rule: l1 -> l1 : x^0'=y^0, (0 >= 0 /\ y^0+x^0 >= 0 /\ y^0-x^0 >= 0), cost: 3*y^0-3*x^0 Applied acceleration Original rule: l1 -> l1 : y^0'=1+y^0, (1+y^0+x^0 <= 0 /\ -y^0+x^0 <= 0), cost: 3 New rule: l1 -> l1 : y^0'=y^0+n0, (-y^0-x^0-n0 >= 0 /\ y^0-x^0 >= 0 /\ n0 >= 0), cost: 3*n0 Sub-proof via acceration calculus written to file:///tmp/tmpnam_oJieiK.txt Applied instantiation Original rule: l1 -> l1 : y^0'=y^0+n0, (-y^0-x^0-n0 >= 0 /\ y^0-x^0 >= 0 /\ n0 >= 0), cost: 3*n0 New rule: l1 -> l1 : y^0'=-x^0, (0 >= 0 /\ -y^0-x^0 >= 0 /\ y^0-x^0 >= 0), cost: -3*y^0-3*x^0 Applied acceleration Original rule: l1 -> l1 : x^0'=-1+x^0, (1+y^0-x^0 <= 0 /\ -1+y^0+x^0 <= 0), cost: 3 New rule: l1 -> l1 : x^0'=-n1+x^0, (1-y^0-x^0 >= 0 /\ n1 >= 0 /\ -n1-y^0+x^0 >= 0), cost: 3*n1 Sub-proof via acceration calculus written to file:///tmp/tmpnam_HBdfgh.txt Applied instantiation Original rule: l1 -> l1 : x^0'=-n1+x^0, (1-y^0-x^0 >= 0 /\ n1 >= 0 /\ -n1-y^0+x^0 >= 0), cost: 3*n1 New rule: l1 -> l1 : x^0'=y^0, (0 >= 0 /\ 1-y^0-x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -3*y^0+3*x^0 Applied acceleration Original rule: l1 -> l1 : y^0'=-1+y^0, (2-y^0-x^0 <= 0 /\ y^0-x^0 <= 0), cost: 3 New rule: l1 -> l1 : y^0'=-n2+y^0, (n2 >= 0 /\ -1-n2+y^0+x^0 >= 0 /\ -y^0+x^0 >= 0), cost: 3*n2 Sub-proof via acceration calculus written to file:///tmp/tmpnam_jMKglG.txt Applied instantiation Original rule: l1 -> l1 : y^0'=-n2+y^0, (n2 >= 0 /\ -1-n2+y^0+x^0 >= 0 /\ -y^0+x^0 >= 0), cost: 3*n2 New rule: l1 -> l1 : y^0'=1-x^0, (0 >= 0 /\ -1+y^0+x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -3+3*y^0+3*x^0 Applied simplification Original rule: l1 -> l1 : x^0'=y^0, (0 >= 0 /\ y^0+x^0 >= 0 /\ y^0-x^0 >= 0), cost: 3*y^0-3*x^0 New rule: l1 -> l1 : x^0'=y^0, (y^0+x^0 >= 0 /\ y^0-x^0 >= 0), cost: 3*y^0-3*x^0 Applied simplification Original rule: l1 -> l1 : y^0'=-x^0, (0 >= 0 /\ -y^0-x^0 >= 0 /\ y^0-x^0 >= 0), cost: -3*y^0-3*x^0 New rule: l1 -> l1 : y^0'=-x^0, (-y^0-x^0 >= 0 /\ y^0-x^0 >= 0), cost: -3*y^0-3*x^0 Applied simplification Original rule: l1 -> l1 : x^0'=y^0, (0 >= 0 /\ 1-y^0-x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -3*y^0+3*x^0 New rule: l1 -> l1 : x^0'=y^0, (1-y^0-x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -3*y^0+3*x^0 Applied simplification Original rule: l1 -> l1 : y^0'=1-x^0, (0 >= 0 /\ -1+y^0+x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -3+3*y^0+3*x^0 New rule: l1 -> l1 : y^0'=1-x^0, (-1+y^0+x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -3+3*y^0+3*x^0 Applied deletion Removed the following rules: 18 19 20 21 Accelerated simple loops Start location: l4 26: l1 -> l1 : x^0'=y^0, (y^0+x^0 >= 0 /\ y^0-x^0 >= 0), cost: 3*y^0-3*x^0 27: l1 -> l1 : y^0'=-x^0, (-y^0-x^0 >= 0 /\ y^0-x^0 >= 0), cost: -3*y^0-3*x^0 28: l1 -> l1 : x^0'=y^0, (1-y^0-x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -3*y^0+3*x^0 29: l1 -> l1 : y^0'=1-x^0, (-1+y^0+x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -3+3*y^0+3*x^0 16: l4 -> l1 : TRUE, cost: 2 Applied chaining First rule: l4 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : x^0'=y^0, (y^0+x^0 >= 0 /\ y^0-x^0 >= 0), cost: 3*y^0-3*x^0 New rule: l4 -> l1 : x^0'=y^0, (y^0+x^0 >= 0 /\ y^0-x^0 >= 0), cost: 2+3*y^0-3*x^0 Applied chaining First rule: l4 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : y^0'=-x^0, (-y^0-x^0 >= 0 /\ y^0-x^0 >= 0), cost: -3*y^0-3*x^0 New rule: l4 -> l1 : y^0'=-x^0, (-y^0-x^0 >= 0 /\ y^0-x^0 >= 0), cost: 2-3*y^0-3*x^0 Applied chaining First rule: l4 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : x^0'=y^0, (1-y^0-x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -3*y^0+3*x^0 New rule: l4 -> l1 : x^0'=y^0, (1-y^0-x^0 >= 0 /\ -y^0+x^0 >= 0), cost: 2-3*y^0+3*x^0 Applied chaining First rule: l4 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : y^0'=1-x^0, (-1+y^0+x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -3+3*y^0+3*x^0 New rule: l4 -> l1 : y^0'=1-x^0, (-1+y^0+x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -1+3*y^0+3*x^0 Applied deletion Removed the following rules: 26 27 28 29 Chained accelerated rules with incoming rules Start location: l4 16: l4 -> l1 : TRUE, cost: 2 30: l4 -> l1 : x^0'=y^0, (y^0+x^0 >= 0 /\ y^0-x^0 >= 0), cost: 2+3*y^0-3*x^0 31: l4 -> l1 : y^0'=-x^0, (-y^0-x^0 >= 0 /\ y^0-x^0 >= 0), cost: 2-3*y^0-3*x^0 32: l4 -> l1 : x^0'=y^0, (1-y^0-x^0 >= 0 /\ -y^0+x^0 >= 0), cost: 2-3*y^0+3*x^0 33: l4 -> l1 : y^0'=1-x^0, (-1+y^0+x^0 >= 0 /\ -y^0+x^0 >= 0), cost: -1+3*y^0+3*x^0 Removed unreachable locations and irrelevant leafs Start location: l4 Computing asymptotic complexity Proved the following lower bound Complexity: Unknown Cpx degree: ? Solved cost: 0 Rule cost: 0