WORST_CASE(Omega(0),?) Initial ITS Start location: l3 0: l0 -> l1 : y^0'=y^post0, x^0'=x^post0, z^0'=z^post0, (-y^0-x^0+x^post0 == 0 /\ -1-z^0+z^post0 == 0 /\ 1-x^0 <= 0 /\ -y^0+y^post0+z^0 == 0), cost: 1 1: l1 -> l0 : y^0'=y^post1, x^0'=x^post1, z^0'=z^post1, (z^0-z^post1 == 0 /\ x^0-x^post1 == 0 /\ y^0-y^post1 == 0), cost: 1 2: l2 -> l0 : y^0'=y^post2, x^0'=x^post2, z^0'=z^post2, (z^0-z^post2 == 0 /\ y^0-y^post2 == 0 /\ -x^post2+x^0 == 0), cost: 1 3: l3 -> l2 : y^0'=y^post3, x^0'=x^post3, z^0'=z^post3, (-x^post3+x^0 == 0 /\ -y^post3+y^0 == 0 /\ -z^post3+z^0 == 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : y^0'=y^post0, x^0'=x^post0, z^0'=z^post0, (-y^0-x^0+x^post0 == 0 /\ -1-z^0+z^post0 == 0 /\ 1-x^0 <= 0 /\ -y^0+y^post0+z^0 == 0), cost: 1 New rule: l0 -> l1 : y^0'=y^0-z^0, x^0'=y^0+x^0, z^0'=1+z^0, -1+x^0 >= 0, cost: 1 Applied preprocessing Original rule: l1 -> l0 : y^0'=y^post1, x^0'=x^post1, z^0'=z^post1, (z^0-z^post1 == 0 /\ x^0-x^post1 == 0 /\ y^0-y^post1 == 0), cost: 1 New rule: l1 -> l0 : TRUE, cost: 1 Applied preprocessing Original rule: l2 -> l0 : y^0'=y^post2, x^0'=x^post2, z^0'=z^post2, (z^0-z^post2 == 0 /\ y^0-y^post2 == 0 /\ -x^post2+x^0 == 0), cost: 1 New rule: l2 -> l0 : TRUE, cost: 1 Applied preprocessing Original rule: l3 -> l2 : y^0'=y^post3, x^0'=x^post3, z^0'=z^post3, (-x^post3+x^0 == 0 /\ -y^post3+y^0 == 0 /\ -z^post3+z^0 == 0), cost: 1 New rule: l3 -> l2 : TRUE, cost: 1 Simplified rules Start location: l3 4: l0 -> l1 : y^0'=y^0-z^0, x^0'=y^0+x^0, z^0'=1+z^0, -1+x^0 >= 0, cost: 1 5: l1 -> l0 : TRUE, cost: 1 6: l2 -> l0 : TRUE, cost: 1 7: l3 -> l2 : TRUE, cost: 1 Eliminating location l2 by chaining: Applied chaining First rule: l3 -> l2 : TRUE, cost: 1 Second rule: l2 -> l0 : TRUE, cost: 1 New rule: l3 -> l0 : TRUE, cost: 2 Applied deletion Removed the following rules: 6 7 Eliminating location l1 by chaining: Applied chaining First rule: l0 -> l1 : y^0'=y^0-z^0, x^0'=y^0+x^0, z^0'=1+z^0, -1+x^0 >= 0, cost: 1 Second rule: l1 -> l0 : TRUE, cost: 1 New rule: l0 -> l0 : y^0'=y^0-z^0, x^0'=y^0+x^0, z^0'=1+z^0, -1+x^0 >= 0, cost: 2 Applied deletion Removed the following rules: 4 5 Eliminated locations on linear paths Start location: l3 9: l0 -> l0 : y^0'=y^0-z^0, x^0'=y^0+x^0, z^0'=1+z^0, -1+x^0 >= 0, cost: 2 8: l3 -> l0 : TRUE, cost: 2 Accelerated simple loops Start location: l3 9: l0 -> l0 : y^0'=y^0-z^0, x^0'=y^0+x^0, z^0'=1+z^0, -1+x^0 >= 0, cost: 2 8: l3 -> l0 : TRUE, cost: 2 Applied chaining First rule: l3 -> l0 : TRUE, cost: 2 Second rule: l0 -> l0 : y^0'=y^0-z^0, x^0'=y^0+x^0, z^0'=1+z^0, -1+x^0 >= 0, cost: 2 New rule: l3 -> l0 : y^0'=y^0-z^0, x^0'=y^0+x^0, z^0'=1+z^0, -1+x^0 >= 0, cost: 4 Applied deletion Removed the following rules: 9 Chained accelerated rules with incoming rules Start location: l3 8: l3 -> l0 : TRUE, cost: 2 10: l3 -> l0 : y^0'=y^0-z^0, x^0'=y^0+x^0, z^0'=1+z^0, -1+x^0 >= 0, cost: 4 Removed unreachable locations and irrelevant leafs Start location: l3 Computing asymptotic complexity Proved the following lower bound Complexity: Unknown Cpx degree: ? Solved cost: 0 Rule cost: 0