WORST_CASE(Omega(0),?) Initial ITS Start location: l3 0: l0 -> l1 : y^0'=y^post0, x^0'=x^post0, z^0'=z^post0, (1-y^0+y^post0 == 0 /\ -y^post0-z^0+z^post0 == 0 /\ x^0-x^post0 == 0), cost: 1 1: l0 -> l1 : y^0'=y^post1, x^0'=x^post1, z^0'=z^post1, (z^0-z^post1 == 0 /\ 1-x^0+x^post1 == 0 /\ 1-y^0+y^post1 == 0), cost: 1 2: l1 -> l0 : y^0'=y^post2, x^0'=x^post2, z^0'=z^post2, (z^0-z^post2 == 0 /\ y^0-y^post2 == 0 /\ y^0-z^0 <= 0 /\ -x^0 <= 0 /\ -x^post2+x^0 == 0), cost: 1 3: l2 -> l1 : y^0'=y^post3, x^0'=x^post3, z^0'=z^post3, (-x^post3+x^0 == 0 /\ -y^post3+y^0 == 0 /\ -z^post3+z^0 == 0), cost: 1 4: l3 -> l2 : y^0'=y^post4, x^0'=x^post4, z^0'=z^post4, (-x^post4+x^0 == 0 /\ -z^post4+z^0 == 0 /\ -y^post4+y^0 == 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : y^0'=y^post0, x^0'=x^post0, z^0'=z^post0, (1-y^0+y^post0 == 0 /\ -y^post0-z^0+z^post0 == 0 /\ x^0-x^post0 == 0), cost: 1 New rule: l0 -> l1 : y^0'=-1+y^0, z^0'=-1+y^0+z^0, TRUE, cost: 1 Applied preprocessing Original rule: l0 -> l1 : y^0'=y^post1, x^0'=x^post1, z^0'=z^post1, (z^0-z^post1 == 0 /\ 1-x^0+x^post1 == 0 /\ 1-y^0+y^post1 == 0), cost: 1 New rule: l0 -> l1 : y^0'=-1+y^0, x^0'=-1+x^0, TRUE, cost: 1 Applied preprocessing Original rule: l1 -> l0 : y^0'=y^post2, x^0'=x^post2, z^0'=z^post2, (z^0-z^post2 == 0 /\ y^0-y^post2 == 0 /\ y^0-z^0 <= 0 /\ -x^0 <= 0 /\ -x^post2+x^0 == 0), cost: 1 New rule: l1 -> l0 : (x^0 >= 0 /\ y^0-z^0 <= 0), cost: 1 Applied preprocessing Original rule: l2 -> l1 : y^0'=y^post3, x^0'=x^post3, z^0'=z^post3, (-x^post3+x^0 == 0 /\ -y^post3+y^0 == 0 /\ -z^post3+z^0 == 0), cost: 1 New rule: l2 -> l1 : TRUE, cost: 1 Applied preprocessing Original rule: l3 -> l2 : y^0'=y^post4, x^0'=x^post4, z^0'=z^post4, (-x^post4+x^0 == 0 /\ -z^post4+z^0 == 0 /\ -y^post4+y^0 == 0), cost: 1 New rule: l3 -> l2 : TRUE, cost: 1 Simplified rules Start location: l3 5: l0 -> l1 : y^0'=-1+y^0, z^0'=-1+y^0+z^0, TRUE, cost: 1 6: l0 -> l1 : y^0'=-1+y^0, x^0'=-1+x^0, TRUE, cost: 1 7: l1 -> l0 : (x^0 >= 0 /\ y^0-z^0 <= 0), cost: 1 8: l2 -> l1 : TRUE, cost: 1 9: l3 -> l2 : TRUE, cost: 1 Eliminating location l2 by chaining: Applied chaining First rule: l3 -> l2 : TRUE, cost: 1 Second rule: l2 -> l1 : TRUE, cost: 1 New rule: l3 -> l1 : TRUE, cost: 2 Applied deletion Removed the following rules: 8 9 Eliminated locations on linear paths Start location: l3 5: l0 -> l1 : y^0'=-1+y^0, z^0'=-1+y^0+z^0, TRUE, cost: 1 6: l0 -> l1 : y^0'=-1+y^0, x^0'=-1+x^0, TRUE, cost: 1 7: l1 -> l0 : (x^0 >= 0 /\ y^0-z^0 <= 0), cost: 1 10: l3 -> l1 : TRUE, cost: 2 Eliminating location l0 by chaining: Applied chaining First rule: l1 -> l0 : (x^0 >= 0 /\ y^0-z^0 <= 0), cost: 1 Second rule: l0 -> l1 : y^0'=-1+y^0, z^0'=-1+y^0+z^0, TRUE, cost: 1 New rule: l1 -> l1 : y^0'=-1+y^0, z^0'=-1+y^0+z^0, (x^0 >= 0 /\ y^0-z^0 <= 0), cost: 2 Applied chaining First rule: l1 -> l0 : (x^0 >= 0 /\ y^0-z^0 <= 0), cost: 1 Second rule: l0 -> l1 : y^0'=-1+y^0, x^0'=-1+x^0, TRUE, cost: 1 New rule: l1 -> l1 : y^0'=-1+y^0, x^0'=-1+x^0, (x^0 >= 0 /\ y^0-z^0 <= 0), cost: 2 Applied deletion Removed the following rules: 5 6 7 Eliminated locations on tree-shaped paths Start location: l3 11: l1 -> l1 : y^0'=-1+y^0, z^0'=-1+y^0+z^0, (x^0 >= 0 /\ y^0-z^0 <= 0), cost: 2 12: l1 -> l1 : y^0'=-1+y^0, x^0'=-1+x^0, (x^0 >= 0 /\ y^0-z^0 <= 0), cost: 2 10: l3 -> l1 : TRUE, cost: 2 Applied acceleration Original rule: l1 -> l1 : y^0'=-1+y^0, z^0'=-1+y^0+z^0, (x^0 >= 0 /\ y^0-z^0 <= 0), cost: 2 New rule: l1 -> l1 : y^0'=-n+y^0, z^0'=-1/2*n+n*y^0+z^0-1/2*n^2, (n >= 0 /\ x^0 >= 0 /\ -1/2+1/2*n-y^0-1/2*(-1+n)^2+y^0*(-1+n)+z^0 >= 0 /\ -y^0+z^0 >= 0), cost: 2*n Sub-proof via acceration calculus written to file:///tmp/tmpnam_aEHHik.txt Applied acceleration Original rule: l1 -> l1 : y^0'=-1+y^0, x^0'=-1+x^0, (x^0 >= 0 /\ y^0-z^0 <= 0), cost: 2 New rule: l1 -> l1 : y^0'=y^0-n0, x^0'=x^0-n0, (n0 >= 0 /\ -y^0+z^0 >= 0 /\ 1+x^0-n0 >= 0), cost: 2*n0 Sub-proof via acceration calculus written to file:///tmp/tmpnam_ijdNba.txt Applied instantiation Original rule: l1 -> l1 : y^0'=y^0-n0, x^0'=x^0-n0, (n0 >= 0 /\ -y^0+z^0 >= 0 /\ 1+x^0-n0 >= 0), cost: 2*n0 New rule: l1 -> l1 : y^0'=-1+y^0-x^0, x^0'=-1, (0 >= 0 /\ 1+x^0 >= 0 /\ -y^0+z^0 >= 0), cost: 2+2*x^0 Applied simplification Original rule: l1 -> l1 : y^0'=-1+y^0-x^0, x^0'=-1, (0 >= 0 /\ 1+x^0 >= 0 /\ -y^0+z^0 >= 0), cost: 2+2*x^0 New rule: l1 -> l1 : y^0'=-1+y^0-x^0, x^0'=-1, (1+x^0 >= 0 /\ -y^0+z^0 >= 0), cost: 2+2*x^0 Applied deletion Removed the following rules: 11 12 Accelerated simple loops Start location: l3 13: l1 -> l1 : y^0'=-n+y^0, z^0'=-1/2*n+n*y^0+z^0-1/2*n^2, (n >= 0 /\ x^0 >= 0 /\ -1/2+1/2*n-y^0-1/2*(-1+n)^2+y^0*(-1+n)+z^0 >= 0 /\ -y^0+z^0 >= 0), cost: 2*n 15: l1 -> l1 : y^0'=-1+y^0-x^0, x^0'=-1, (1+x^0 >= 0 /\ -y^0+z^0 >= 0), cost: 2+2*x^0 10: l3 -> l1 : TRUE, cost: 2 Applied chaining First rule: l3 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : y^0'=-n+y^0, z^0'=-1/2*n+n*y^0+z^0-1/2*n^2, (n >= 0 /\ x^0 >= 0 /\ -1/2+1/2*n-y^0-1/2*(-1+n)^2+y^0*(-1+n)+z^0 >= 0 /\ -y^0+z^0 >= 0), cost: 2*n New rule: l3 -> l1 : y^0'=-n+y^0, z^0'=-1/2*n+n*y^0+z^0-1/2*n^2, (n >= 0 /\ x^0 >= 0 /\ -1/2+1/2*n-y^0-1/2*(-1+n)^2+y^0*(-1+n)+z^0 >= 0 /\ -y^0+z^0 >= 0), cost: 2+2*n Applied chaining First rule: l3 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : y^0'=-1+y^0-x^0, x^0'=-1, (1+x^0 >= 0 /\ -y^0+z^0 >= 0), cost: 2+2*x^0 New rule: l3 -> l1 : y^0'=-1+y^0-x^0, x^0'=-1, (1+x^0 >= 0 /\ -y^0+z^0 >= 0), cost: 4+2*x^0 Applied deletion Removed the following rules: 13 15 Chained accelerated rules with incoming rules Start location: l3 10: l3 -> l1 : TRUE, cost: 2 16: l3 -> l1 : y^0'=-n+y^0, z^0'=-1/2*n+n*y^0+z^0-1/2*n^2, (n >= 0 /\ x^0 >= 0 /\ -1/2+1/2*n-y^0-1/2*(-1+n)^2+y^0*(-1+n)+z^0 >= 0 /\ -y^0+z^0 >= 0), cost: 2+2*n 17: l3 -> l1 : y^0'=-1+y^0-x^0, x^0'=-1, (1+x^0 >= 0 /\ -y^0+z^0 >= 0), cost: 4+2*x^0 Removed unreachable locations and irrelevant leafs Start location: l3 Computing asymptotic complexity Proved the following lower bound Complexity: Unknown Cpx degree: ? Solved cost: 0 Rule cost: 0