WORST_CASE(Omega(0),?) Initial ITS Start location: l6 0: l0 -> l1 : y^0'=y^post0, __disjvr_1^0'=__disjvr_1^post0, x^0'=x^post0, __disjvr_0^0'=__disjvr_0^post0, __disjvr_2^0'=__disjvr_2^post0, (-1-2*y^0+x^0 <= 0 /\ -__disjvr_2^post0+__disjvr_2^0 == 0 /\ y^0-y^post0 == 0 /\ __disjvr_0^0-__disjvr_0^post0 == 0 /\ -__disjvr_1^post0+__disjvr_1^0 == 0 /\ 1+2*y^0-x^0 <= 0 /\ -1-3*x^0+x^post0 == 0), cost: 1 1: l0 -> l1 : y^0'=y^post1, __disjvr_1^0'=__disjvr_1^post1, x^0'=x^post1, __disjvr_0^0'=__disjvr_0^post1, __disjvr_2^0'=__disjvr_2^post1, (-__disjvr_0^post1+__disjvr_0^0 == 0 /\ -__disjvr_2^post1+__disjvr_2^0 == 0 /\ __disjvr_1^0-__disjvr_1^post1 == 0 /\ y^0-y^post1 == 0 /\ 2*y^0-x^0 <= 0 /\ x^post1-y^0 == 0 /\ -2*y^0+x^0 <= 0), cost: 1 2: l1 -> l2 : y^0'=y^post2, __disjvr_1^0'=__disjvr_1^post2, x^0'=x^post2, __disjvr_0^0'=__disjvr_0^post2, __disjvr_2^0'=__disjvr_2^post2, (y^0-y^post2 == 0 /\ -__disjvr_1^post2+__disjvr_1^0 == 0 /\ -__disjvr_2^post2+__disjvr_2^0 == 0 /\ __disjvr_0^0-__disjvr_0^post2 == 0 /\ -__disjvr_0^0+__disjvr_0^post2 == 0 /\ x^0-x^post2 == 0), cost: 1 3: l2 -> l3 : y^0'=y^post3, __disjvr_1^0'=__disjvr_1^post3, x^0'=x^post3, __disjvr_0^0'=__disjvr_0^post3, __disjvr_2^0'=__disjvr_2^post3, (y^0-y^post3 == 0 /\ -__disjvr_2^post3+__disjvr_2^0 == 0 /\ -__disjvr_1^0+__disjvr_1^post3 == 0 /\ __disjvr_1^0-__disjvr_1^post3 == 0 /\ x^0-x^post3 == 0 /\ -__disjvr_0^post3+__disjvr_0^0 == 0), cost: 1 4: l3 -> l4 : y^0'=y^post4, __disjvr_1^0'=__disjvr_1^post4, x^0'=x^post4, __disjvr_0^0'=__disjvr_0^post4, __disjvr_2^0'=__disjvr_2^post4, (__disjvr_2^post4-__disjvr_2^0 == 0 /\ __disjvr_0^0-__disjvr_0^post4 == 0 /\ x^0-x^post4 == 0 /\ -__disjvr_2^post4+__disjvr_2^0 == 0 /\ __disjvr_1^0-__disjvr_1^post4 == 0 /\ y^0-y^post4 == 0), cost: 1 5: l4 -> l0 : y^0'=y^post5, __disjvr_1^0'=__disjvr_1^post5, x^0'=x^post5, __disjvr_0^0'=__disjvr_0^post5, __disjvr_2^0'=__disjvr_2^post5, (0 == 0 /\ __disjvr_2^0-__disjvr_2^post5 == 0 /\ -x^post5+x^0 == 0 /\ -__disjvr_0^post5+__disjvr_0^0 == 0 /\ __disjvr_1^0-__disjvr_1^post5 == 0), cost: 1 6: l5 -> l1 : y^0'=y^post6, __disjvr_1^0'=__disjvr_1^post6, x^0'=x^post6, __disjvr_0^0'=__disjvr_0^post6, __disjvr_2^0'=__disjvr_2^post6, (0 == 0 /\ -__disjvr_2^post6+__disjvr_2^0 == 0 /\ 1-x^post6 <= 0 /\ y^0-y^post6 == 0 /\ -__disjvr_0^post6+__disjvr_0^0 == 0 /\ __disjvr_1^0-__disjvr_1^post6 == 0), cost: 1 7: l6 -> l5 : y^0'=y^post7, __disjvr_1^0'=__disjvr_1^post7, x^0'=x^post7, __disjvr_0^0'=__disjvr_0^post7, __disjvr_2^0'=__disjvr_2^post7, (-x^post7+x^0 == 0 /\ __disjvr_2^0-__disjvr_2^post7 == 0 /\ __disjvr_0^0-__disjvr_0^post7 == 0 /\ __disjvr_1^0-__disjvr_1^post7 == 0 /\ y^0-y^post7 == 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : y^0'=y^post0, __disjvr_1^0'=__disjvr_1^post0, x^0'=x^post0, __disjvr_0^0'=__disjvr_0^post0, __disjvr_2^0'=__disjvr_2^post0, (-1-2*y^0+x^0 <= 0 /\ -__disjvr_2^post0+__disjvr_2^0 == 0 /\ y^0-y^post0 == 0 /\ __disjvr_0^0-__disjvr_0^post0 == 0 /\ -__disjvr_1^post0+__disjvr_1^0 == 0 /\ 1+2*y^0-x^0 <= 0 /\ -1-3*x^0+x^post0 == 0), cost: 1 New rule: l0 -> l1 : x^0'=1+3*x^0, -1-2*y^0+x^0 == 0, cost: 1 Applied preprocessing Original rule: l0 -> l1 : y^0'=y^post1, __disjvr_1^0'=__disjvr_1^post1, x^0'=x^post1, __disjvr_0^0'=__disjvr_0^post1, __disjvr_2^0'=__disjvr_2^post1, (-__disjvr_0^post1+__disjvr_0^0 == 0 /\ -__disjvr_2^post1+__disjvr_2^0 == 0 /\ __disjvr_1^0-__disjvr_1^post1 == 0 /\ y^0-y^post1 == 0 /\ 2*y^0-x^0 <= 0 /\ x^post1-y^0 == 0 /\ -2*y^0+x^0 <= 0), cost: 1 New rule: l0 -> l1 : x^0'=y^0, 2*y^0-x^0 == 0, cost: 1 Applied preprocessing Original rule: l1 -> l2 : y^0'=y^post2, __disjvr_1^0'=__disjvr_1^post2, x^0'=x^post2, __disjvr_0^0'=__disjvr_0^post2, __disjvr_2^0'=__disjvr_2^post2, (y^0-y^post2 == 0 /\ -__disjvr_1^post2+__disjvr_1^0 == 0 /\ -__disjvr_2^post2+__disjvr_2^0 == 0 /\ __disjvr_0^0-__disjvr_0^post2 == 0 /\ -__disjvr_0^0+__disjvr_0^post2 == 0 /\ x^0-x^post2 == 0), cost: 1 New rule: l1 -> l2 : 0 == 0, cost: 1 Applied preprocessing Original rule: l2 -> l3 : y^0'=y^post3, __disjvr_1^0'=__disjvr_1^post3, x^0'=x^post3, __disjvr_0^0'=__disjvr_0^post3, __disjvr_2^0'=__disjvr_2^post3, (y^0-y^post3 == 0 /\ -__disjvr_2^post3+__disjvr_2^0 == 0 /\ -__disjvr_1^0+__disjvr_1^post3 == 0 /\ __disjvr_1^0-__disjvr_1^post3 == 0 /\ x^0-x^post3 == 0 /\ -__disjvr_0^post3+__disjvr_0^0 == 0), cost: 1 New rule: l2 -> l3 : 0 == 0, cost: 1 Applied preprocessing Original rule: l3 -> l4 : y^0'=y^post4, __disjvr_1^0'=__disjvr_1^post4, x^0'=x^post4, __disjvr_0^0'=__disjvr_0^post4, __disjvr_2^0'=__disjvr_2^post4, (__disjvr_2^post4-__disjvr_2^0 == 0 /\ __disjvr_0^0-__disjvr_0^post4 == 0 /\ x^0-x^post4 == 0 /\ -__disjvr_2^post4+__disjvr_2^0 == 0 /\ __disjvr_1^0-__disjvr_1^post4 == 0 /\ y^0-y^post4 == 0), cost: 1 New rule: l3 -> l4 : 0 == 0, cost: 1 Applied preprocessing Original rule: l4 -> l0 : y^0'=y^post5, __disjvr_1^0'=__disjvr_1^post5, x^0'=x^post5, __disjvr_0^0'=__disjvr_0^post5, __disjvr_2^0'=__disjvr_2^post5, (0 == 0 /\ __disjvr_2^0-__disjvr_2^post5 == 0 /\ -x^post5+x^0 == 0 /\ -__disjvr_0^post5+__disjvr_0^0 == 0 /\ __disjvr_1^0-__disjvr_1^post5 == 0), cost: 1 New rule: l4 -> l0 : y^0'=y^post5, 0 == 0, cost: 1 Applied preprocessing Original rule: l5 -> l1 : y^0'=y^post6, __disjvr_1^0'=__disjvr_1^post6, x^0'=x^post6, __disjvr_0^0'=__disjvr_0^post6, __disjvr_2^0'=__disjvr_2^post6, (0 == 0 /\ -__disjvr_2^post6+__disjvr_2^0 == 0 /\ 1-x^post6 <= 0 /\ y^0-y^post6 == 0 /\ -__disjvr_0^post6+__disjvr_0^0 == 0 /\ __disjvr_1^0-__disjvr_1^post6 == 0), cost: 1 New rule: l5 -> l1 : x^0'=x^post6, -1+x^post6 >= 0, cost: 1 Applied preprocessing Original rule: l6 -> l5 : y^0'=y^post7, __disjvr_1^0'=__disjvr_1^post7, x^0'=x^post7, __disjvr_0^0'=__disjvr_0^post7, __disjvr_2^0'=__disjvr_2^post7, (-x^post7+x^0 == 0 /\ __disjvr_2^0-__disjvr_2^post7 == 0 /\ __disjvr_0^0-__disjvr_0^post7 == 0 /\ __disjvr_1^0-__disjvr_1^post7 == 0 /\ y^0-y^post7 == 0), cost: 1 New rule: l6 -> l5 : TRUE, cost: 1 Simplified rules Start location: l6 8: l0 -> l1 : x^0'=1+3*x^0, -1-2*y^0+x^0 == 0, cost: 1 9: l0 -> l1 : x^0'=y^0, 2*y^0-x^0 == 0, cost: 1 10: l1 -> l2 : 0 == 0, cost: 1 11: l2 -> l3 : 0 == 0, cost: 1 12: l3 -> l4 : 0 == 0, cost: 1 13: l4 -> l0 : y^0'=y^post5, 0 == 0, cost: 1 14: l5 -> l1 : x^0'=x^post6, -1+x^post6 >= 0, cost: 1 15: l6 -> l5 : TRUE, cost: 1 Eliminating location l5 by chaining: Applied chaining First rule: l6 -> l5 : TRUE, cost: 1 Second rule: l5 -> l1 : x^0'=x^post6, -1+x^post6 >= 0, cost: 1 New rule: l6 -> l1 : x^0'=x^post6, -1+x^post6 >= 0, cost: 2 Applied deletion Removed the following rules: 14 15 Eliminating location l2 by chaining: Applied chaining First rule: l1 -> l2 : 0 == 0, cost: 1 Second rule: l2 -> l3 : 0 == 0, cost: 1 New rule: l1 -> l3 : 0 == 0, cost: 2 Applied deletion Removed the following rules: 10 11 Eliminating location l3 by chaining: Applied chaining First rule: l1 -> l3 : 0 == 0, cost: 2 Second rule: l3 -> l4 : 0 == 0, cost: 1 New rule: l1 -> l4 : 0 == 0, cost: 3 Applied deletion Removed the following rules: 12 17 Eliminating location l4 by chaining: Applied chaining First rule: l1 -> l4 : 0 == 0, cost: 3 Second rule: l4 -> l0 : y^0'=y^post5, 0 == 0, cost: 1 New rule: l1 -> l0 : y^0'=y^post5, 0 == 0, cost: 4 Applied deletion Removed the following rules: 13 18 Eliminated locations on linear paths Start location: l6 8: l0 -> l1 : x^0'=1+3*x^0, -1-2*y^0+x^0 == 0, cost: 1 9: l0 -> l1 : x^0'=y^0, 2*y^0-x^0 == 0, cost: 1 19: l1 -> l0 : y^0'=y^post5, 0 == 0, cost: 4 16: l6 -> l1 : x^0'=x^post6, -1+x^post6 >= 0, cost: 2 Eliminating location l0 by chaining: Applied chaining First rule: l1 -> l0 : y^0'=y^post5, 0 == 0, cost: 4 Second rule: l0 -> l1 : x^0'=1+3*x^0, -1-2*y^0+x^0 == 0, cost: 1 New rule: l1 -> l1 : y^0'=y^post5, x^0'=1+3*x^0, (0 == 0 /\ -1+x^0-2*y^post5 == 0), cost: 5 Applied simplification Original rule: l1 -> l1 : y^0'=y^post5, x^0'=1+3*x^0, (0 == 0 /\ -1+x^0-2*y^post5 == 0), cost: 5 New rule: l1 -> l1 : y^0'=y^post5, x^0'=1+3*x^0, -1+x^0-2*y^post5 == 0, cost: 5 Applied chaining First rule: l1 -> l0 : y^0'=y^post5, 0 == 0, cost: 4 Second rule: l0 -> l1 : x^0'=y^0, 2*y^0-x^0 == 0, cost: 1 New rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, (0 == 0 /\ -x^0+2*y^post5 == 0), cost: 5 Applied simplification Original rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, (0 == 0 /\ -x^0+2*y^post5 == 0), cost: 5 New rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, -x^0+2*y^post5 == 0, cost: 5 Applied deletion Removed the following rules: 8 9 19 Eliminated locations on tree-shaped paths Start location: l6 20: l1 -> l1 : y^0'=y^post5, x^0'=1+3*x^0, -1+x^0-2*y^post5 == 0, cost: 5 21: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, -x^0+2*y^post5 == 0, cost: 5 16: l6 -> l1 : x^0'=x^post6, -1+x^post6 >= 0, cost: 2 Applied acceleration Original rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, -x^0+2*y^post5 == 0, cost: 5 New rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, (-x^0+2*y^post5 >= 0 /\ y^post5 >= 0 /\ x^0-2*y^post5 >= 0 /\ -y^post5 >= 0 /\ -1+n0 >= 0), cost: 5*n0 Sub-proof via acceration calculus written to file:///tmp/tmpnam_PghdJi.txt Applied nonterm Original rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, -x^0+2*y^post5 == 0, cost: 5 New rule: l1 -> [7] : (x^0-y^post5 <= 0 /\ -x^0+2*y^post5 >= 0 /\ -x^0+y^post5 <= 0 /\ x^0-2*y^post5 >= 0), cost: NONTERM Sub-proof via acceration calculus written to file:///tmp/tmpnam_OBKgLf.txt Applied chaining First rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, -x^0+2*y^post5 == 0, cost: 5 Second rule: l1 -> l1 : y^0'=y^post5, x^0'=1+3*x^0, -1+x^0-2*y^post5 == 0, cost: 5 New rule: l1 -> l1 : y^0'=-1, x^0'=-2, 2+x^0 == 0, cost: 10 Applied nonterm Original rule: l1 -> l1 : y^0'=-1, x^0'=-2, 2+x^0 == 0, cost: 10 New rule: l1 -> [7] : (-2-x^0 >= 0 /\ -1+n1 >= 0 /\ 2+x^0 >= 0), cost: NONTERM Sub-proof via acceration calculus written to file:///tmp/tmpnam_ipJcCc.txt Applied chaining First rule: l1 -> l1 : y^0'=y^post5, x^0'=1+3*x^0, -1+x^0-2*y^post5 == 0, cost: 5 Second rule: l1 -> [7] : (-2-x^0 >= 0 /\ -1+n1 >= 0 /\ 2+x^0 >= 0), cost: NONTERM New rule: l1 -> [7] : (-1+x^0-2*y^post5 == 0 /\ -1+n1 >= 0 /\ -3-3*x^0 >= 0 /\ 3+3*x^0 >= 0), cost: NONTERM Applied chaining First rule: l1 -> l1 : y^0'=y^post5, x^0'=1+3*x^0, -1+x^0-2*y^post5 == 0, cost: 5 Second rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, -x^0+2*y^post5 == 0, cost: 5 New rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, (-1+x^0-2*y^post5 == 0 /\ -1-3*x^0+2*y^post5 == 0), cost: 10 Applied acceleration Original rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, (-1+x^0-2*y^post5 == 0 /\ -1-3*x^0+2*y^post5 == 0), cost: 10 New rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, (1+y^post5 >= 0 /\ -1-y^post5 >= 0 /\ 1-x^0+2*y^post5 >= 0 /\ -1+x^0-2*y^post5 >= 0 /\ 1+3*x^0-2*y^post5 >= 0 /\ -1-3*x^0+2*y^post5 >= 0 /\ -1+n2 >= 0), cost: 10*n2 Sub-proof via acceration calculus written to file:///tmp/tmpnam_jJMnoE.txt Applied nonterm Original rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, (-1+x^0-2*y^post5 == 0 /\ -1-3*x^0+2*y^post5 == 0), cost: 10 New rule: l1 -> [7] : (x^0-y^post5 <= 0 /\ 1-x^0+2*y^post5 >= 0 /\ -1+x^0-2*y^post5 >= 0 /\ -x^0+y^post5 <= 0 /\ 1+3*x^0-2*y^post5 >= 0 /\ -1-3*x^0+2*y^post5 >= 0), cost: NONTERM Sub-proof via acceration calculus written to file:///tmp/tmpnam_cKAEpm.txt Applied chaining First rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, -x^0+2*y^post5 == 0, cost: 5 Second rule: l1 -> [7] : (x^0-y^post5 <= 0 /\ 1-x^0+2*y^post5 >= 0 /\ -1+x^0-2*y^post5 >= 0 /\ -x^0+y^post5 <= 0 /\ 1+3*x^0-2*y^post5 >= 0 /\ -1-3*x^0+2*y^post5 >= 0), cost: NONTERM New rule: l1 -> [7] : (0 <= 0 /\ 1+y^post5 >= 0 /\ -1-y^post5 >= 0 /\ -x^0+2*y^post5 == 0), cost: NONTERM Applied simplification Original rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, (-x^0+2*y^post5 >= 0 /\ y^post5 >= 0 /\ x^0-2*y^post5 >= 0 /\ -y^post5 >= 0 /\ -1+n0 >= 0), cost: 5*n0 New rule: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, (-x^0+2*y^post5 >= 0 /\ y^post5 <= 0 /\ y^post5 >= 0 /\ x^0-2*y^post5 >= 0 /\ -1+n0 >= 0), cost: 5*n0 Applied simplification Original rule: l1 -> [7] : (-2-x^0 >= 0 /\ -1+n1 >= 0 /\ 2+x^0 >= 0), cost: NONTERM New rule: l1 -> [7] : (-1+n1 >= 0 /\ 2+x^0 <= 0 /\ 2+x^0 >= 0), cost: NONTERM Applied simplification Original rule: l1 -> [7] : (-1+x^0-2*y^post5 == 0 /\ -1+n1 >= 0 /\ -3-3*x^0 >= 0 /\ 3+3*x^0 >= 0), cost: NONTERM New rule: l1 -> [7] : (-1+x^0-2*y^post5 == 0 /\ -1+n1 >= 0 /\ 1+x^0 <= 0 /\ 1+x^0 >= 0), cost: NONTERM Applied simplification Original rule: l1 -> [7] : (x^0-y^post5 <= 0 /\ 1-x^0+2*y^post5 >= 0 /\ -1+x^0-2*y^post5 >= 0 /\ -x^0+y^post5 <= 0 /\ 1+3*x^0-2*y^post5 >= 0 /\ -1-3*x^0+2*y^post5 >= 0), cost: NONTERM New rule: l1 -> [7] : (1-x^0+2*y^post5 >= 0 /\ -x^0+y^post5 <= 0 /\ -1-3*x^0+2*y^post5 >= 0), cost: NONTERM Applied simplification Original rule: l1 -> [7] : (0 <= 0 /\ 1+y^post5 >= 0 /\ -1-y^post5 >= 0 /\ -x^0+2*y^post5 == 0), cost: NONTERM New rule: l1 -> [7] : (1+y^post5 <= 0 /\ 1+y^post5 >= 0 /\ -x^0+2*y^post5 == 0), cost: NONTERM Applied deletion Removed the following rules: 21 Accelerated simple loops Start location: l6 20: l1 -> l1 : y^0'=y^post5, x^0'=1+3*x^0, -1+x^0-2*y^post5 == 0, cost: 5 23: l1 -> [7] : (x^0-y^post5 <= 0 /\ -x^0+2*y^post5 >= 0 /\ -x^0+y^post5 <= 0 /\ x^0-2*y^post5 >= 0), cost: NONTERM 28: l1 -> l1 : y^0'=y^post5, x^0'=y^post5, (-x^0+2*y^post5 >= 0 /\ y^post5 <= 0 /\ y^post5 >= 0 /\ x^0-2*y^post5 >= 0 /\ -1+n0 >= 0), cost: 5*n0 29: l1 -> [7] : (-1+n1 >= 0 /\ 2+x^0 <= 0 /\ 2+x^0 >= 0), cost: NONTERM 30: l1 -> [7] : (-1+x^0-2*y^post5 == 0 /\ -1+n1 >= 0 /\ 1+x^0 <= 0 /\ 1+x^0 >= 0), cost: NONTERM 31: l1 -> [7] : (1-x^0+2*y^post5 >= 0 /\ -x^0+y^post5 <= 0 /\ -1-3*x^0+2*y^post5 >= 0), cost: NONTERM 32: l1 -> [7] : (1+y^post5 <= 0 /\ 1+y^post5 >= 0 /\ -x^0+2*y^post5 == 0), cost: NONTERM 16: l6 -> l1 : x^0'=x^post6, -1+x^post6 >= 0, cost: 2 Applied chaining First rule: l6 -> l1 : x^0'=x^post6, -1+x^post6 >= 0, cost: 2 Second rule: l1 -> l1 : y^0'=y^post5, x^0'=1+3*x^0, -1+x^0-2*y^post5 == 0, cost: 5 New rule: l6 -> l1 : y^0'=y^post5, x^0'=4+6*y^post5, y^post5 >= 0, cost: 7 Applied deletion Removed the following rules: 20 23 28 29 30 31 32 Chained accelerated rules with incoming rules Start location: l6 16: l6 -> l1 : x^0'=x^post6, -1+x^post6 >= 0, cost: 2 33: l6 -> l1 : y^0'=y^post5, x^0'=4+6*y^post5, y^post5 >= 0, cost: 7 Removed unreachable locations and irrelevant leafs Start location: l6 Computing asymptotic complexity Proved the following lower bound Complexity: Unknown Cpx degree: ? Solved cost: 0 Rule cost: 0