WORST_CASE(Omega(0),?) Initial ITS Start location: l7 0: l0 -> l1 : x_5^0'=x_5^post0, Result_4^0'=Result_4^post0, y_6^0'=y_6^post0, (y_6^0-y_6^post0 == 0 /\ Result_4^0-Result_4^post0 == 0 /\ x_5^0-x_5^post0 == 0), cost: 1 1: l1 -> l3 : x_5^0'=x_5^post1, Result_4^0'=Result_4^post1, y_6^0'=y_6^post1, (y_6^0-y_6^post1 == 0 /\ Result_4^0-Result_4^post1 == 0 /\ x_5^0-x_5^post1 == 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 5: l1 -> l5 : x_5^0'=x_5^post5, Result_4^0'=Result_4^post5, y_6^0'=y_6^post5, (-Result_4^post5+Result_4^0 == 0 /\ -1+x_5^post5-x_5^0 == 0 /\ -y_6^post5+y_6^0 == 0 /\ x_5^0-y_6^0 <= 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 7: l1 -> l6 : x_5^0'=x_5^post7, Result_4^0'=Result_4^post7, y_6^0'=y_6^post7, (-1-x_5^0+x_5^post7 == 0 /\ -y_6^post7+y_6^0 == 0 /\ -Result_4^post7+Result_4^0 == 0 /\ 1+x_5^0-y_6^0 <= 0), cost: 1 2: l3 -> l4 : x_5^0'=x_5^post2, Result_4^0'=Result_4^post2, y_6^0'=y_6^post2, (y_6^0-y_6^post2 == 0 /\ x_5^0-x_5^post2 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ -Result_4^post2+Result_4^0 == 0), cost: 1 3: l3 -> l4 : x_5^0'=x_5^post3, Result_4^0'=Result_4^post3, y_6^0'=y_6^post3, (-Result_4^post3+Result_4^0 == 0 /\ -x_5^post3+x_5^0 == 0 /\ -y_6^post3+y_6^0 == 0 /\ 1-x_5^0+y_6^0 <= 0), cost: 1 4: l4 -> l2 : x_5^0'=x_5^post4, Result_4^0'=Result_4^post4, y_6^0'=y_6^post4, (0 == 0 /\ -y_6^post4+y_6^0 == 0 /\ -x_5^post4+x_5^0 == 0), cost: 1 6: l5 -> l1 : x_5^0'=x_5^post6, Result_4^0'=Result_4^post6, y_6^0'=y_6^post6, (-Result_4^post6+Result_4^0 == 0 /\ x_5^0-x_5^post6 == 0 /\ -y_6^post6+y_6^0 == 0), cost: 1 8: l6 -> l1 : x_5^0'=x_5^post8, Result_4^0'=Result_4^post8, y_6^0'=y_6^post8, (Result_4^0-Result_4^post8 == 0 /\ -y_6^post8+y_6^0 == 0 /\ x_5^0-x_5^post8 == 0), cost: 1 9: l7 -> l0 : x_5^0'=x_5^post9, Result_4^0'=Result_4^post9, y_6^0'=y_6^post9, (x_5^0-x_5^post9 == 0 /\ Result_4^0-Result_4^post9 == 0 /\ -y_6^post9+y_6^0 == 0), cost: 1 Removed unreachable rules and leafs Start location: l7 0: l0 -> l1 : x_5^0'=x_5^post0, Result_4^0'=Result_4^post0, y_6^0'=y_6^post0, (y_6^0-y_6^post0 == 0 /\ Result_4^0-Result_4^post0 == 0 /\ x_5^0-x_5^post0 == 0), cost: 1 5: l1 -> l5 : x_5^0'=x_5^post5, Result_4^0'=Result_4^post5, y_6^0'=y_6^post5, (-Result_4^post5+Result_4^0 == 0 /\ -1+x_5^post5-x_5^0 == 0 /\ -y_6^post5+y_6^0 == 0 /\ x_5^0-y_6^0 <= 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 7: l1 -> l6 : x_5^0'=x_5^post7, Result_4^0'=Result_4^post7, y_6^0'=y_6^post7, (-1-x_5^0+x_5^post7 == 0 /\ -y_6^post7+y_6^0 == 0 /\ -Result_4^post7+Result_4^0 == 0 /\ 1+x_5^0-y_6^0 <= 0), cost: 1 6: l5 -> l1 : x_5^0'=x_5^post6, Result_4^0'=Result_4^post6, y_6^0'=y_6^post6, (-Result_4^post6+Result_4^0 == 0 /\ x_5^0-x_5^post6 == 0 /\ -y_6^post6+y_6^0 == 0), cost: 1 8: l6 -> l1 : x_5^0'=x_5^post8, Result_4^0'=Result_4^post8, y_6^0'=y_6^post8, (Result_4^0-Result_4^post8 == 0 /\ -y_6^post8+y_6^0 == 0 /\ x_5^0-x_5^post8 == 0), cost: 1 9: l7 -> l0 : x_5^0'=x_5^post9, Result_4^0'=Result_4^post9, y_6^0'=y_6^post9, (x_5^0-x_5^post9 == 0 /\ Result_4^0-Result_4^post9 == 0 /\ -y_6^post9+y_6^0 == 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : x_5^0'=x_5^post0, Result_4^0'=Result_4^post0, y_6^0'=y_6^post0, (y_6^0-y_6^post0 == 0 /\ Result_4^0-Result_4^post0 == 0 /\ x_5^0-x_5^post0 == 0), cost: 1 New rule: l0 -> l1 : TRUE, cost: 1 Applied preprocessing Original rule: l1 -> l5 : x_5^0'=x_5^post5, Result_4^0'=Result_4^post5, y_6^0'=y_6^post5, (-Result_4^post5+Result_4^0 == 0 /\ -1+x_5^post5-x_5^0 == 0 /\ -y_6^post5+y_6^0 == 0 /\ x_5^0-y_6^0 <= 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 New rule: l1 -> l5 : x_5^0'=1+x_5^0, x_5^0-y_6^0 == 0, cost: 1 Applied preprocessing Original rule: l5 -> l1 : x_5^0'=x_5^post6, Result_4^0'=Result_4^post6, y_6^0'=y_6^post6, (-Result_4^post6+Result_4^0 == 0 /\ x_5^0-x_5^post6 == 0 /\ -y_6^post6+y_6^0 == 0), cost: 1 New rule: l5 -> l1 : TRUE, cost: 1 Applied preprocessing Original rule: l1 -> l6 : x_5^0'=x_5^post7, Result_4^0'=Result_4^post7, y_6^0'=y_6^post7, (-1-x_5^0+x_5^post7 == 0 /\ -y_6^post7+y_6^0 == 0 /\ -Result_4^post7+Result_4^0 == 0 /\ 1+x_5^0-y_6^0 <= 0), cost: 1 New rule: l1 -> l6 : x_5^0'=1+x_5^0, 1+x_5^0-y_6^0 <= 0, cost: 1 Applied preprocessing Original rule: l6 -> l1 : x_5^0'=x_5^post8, Result_4^0'=Result_4^post8, y_6^0'=y_6^post8, (Result_4^0-Result_4^post8 == 0 /\ -y_6^post8+y_6^0 == 0 /\ x_5^0-x_5^post8 == 0), cost: 1 New rule: l6 -> l1 : TRUE, cost: 1 Applied preprocessing Original rule: l7 -> l0 : x_5^0'=x_5^post9, Result_4^0'=Result_4^post9, y_6^0'=y_6^post9, (x_5^0-x_5^post9 == 0 /\ Result_4^0-Result_4^post9 == 0 /\ -y_6^post9+y_6^0 == 0), cost: 1 New rule: l7 -> l0 : TRUE, cost: 1 Simplified rules Start location: l7 10: l0 -> l1 : TRUE, cost: 1 11: l1 -> l5 : x_5^0'=1+x_5^0, x_5^0-y_6^0 == 0, cost: 1 13: l1 -> l6 : x_5^0'=1+x_5^0, 1+x_5^0-y_6^0 <= 0, cost: 1 12: l5 -> l1 : TRUE, cost: 1 14: l6 -> l1 : TRUE, cost: 1 15: l7 -> l0 : TRUE, cost: 1 Eliminating location l0 by chaining: Applied chaining First rule: l7 -> l0 : TRUE, cost: 1 Second rule: l0 -> l1 : TRUE, cost: 1 New rule: l7 -> l1 : TRUE, cost: 2 Applied deletion Removed the following rules: 10 15 Eliminating location l5 by chaining: Applied chaining First rule: l1 -> l5 : x_5^0'=1+x_5^0, x_5^0-y_6^0 == 0, cost: 1 Second rule: l5 -> l1 : TRUE, cost: 1 New rule: l1 -> l1 : x_5^0'=1+x_5^0, x_5^0-y_6^0 == 0, cost: 2 Applied deletion Removed the following rules: 11 12 Eliminating location l6 by chaining: Applied chaining First rule: l1 -> l6 : x_5^0'=1+x_5^0, 1+x_5^0-y_6^0 <= 0, cost: 1 Second rule: l6 -> l1 : TRUE, cost: 1 New rule: l1 -> l1 : x_5^0'=1+x_5^0, 1+x_5^0-y_6^0 <= 0, cost: 2 Applied deletion Removed the following rules: 13 14 Eliminated locations on linear paths Start location: l7 17: l1 -> l1 : x_5^0'=1+x_5^0, x_5^0-y_6^0 == 0, cost: 2 18: l1 -> l1 : x_5^0'=1+x_5^0, 1+x_5^0-y_6^0 <= 0, cost: 2 16: l7 -> l1 : TRUE, cost: 2 Applied acceleration Original rule: l1 -> l1 : x_5^0'=1+x_5^0, 1+x_5^0-y_6^0 <= 0, cost: 2 New rule: l1 -> l1 : x_5^0'=n0+x_5^0, (n0 >= 0 /\ -n0-x_5^0+y_6^0 >= 0), cost: 2*n0 Sub-proof via acceration calculus written to file:///tmp/tmpnam_PBJHpD.txt Applied instantiation Original rule: l1 -> l1 : x_5^0'=n0+x_5^0, (n0 >= 0 /\ -n0-x_5^0+y_6^0 >= 0), cost: 2*n0 New rule: l1 -> l1 : x_5^0'=y_6^0, (0 >= 0 /\ -x_5^0+y_6^0 >= 0), cost: -2*x_5^0+2*y_6^0 Applied simplification Original rule: l1 -> l1 : x_5^0'=y_6^0, (0 >= 0 /\ -x_5^0+y_6^0 >= 0), cost: -2*x_5^0+2*y_6^0 New rule: l1 -> l1 : x_5^0'=y_6^0, -x_5^0+y_6^0 >= 0, cost: -2*x_5^0+2*y_6^0 Applied deletion Removed the following rules: 18 Accelerated simple loops Start location: l7 17: l1 -> l1 : x_5^0'=1+x_5^0, x_5^0-y_6^0 == 0, cost: 2 20: l1 -> l1 : x_5^0'=y_6^0, -x_5^0+y_6^0 >= 0, cost: -2*x_5^0+2*y_6^0 16: l7 -> l1 : TRUE, cost: 2 Applied chaining First rule: l7 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : x_5^0'=1+x_5^0, x_5^0-y_6^0 == 0, cost: 2 New rule: l7 -> l1 : x_5^0'=1+x_5^0, x_5^0-y_6^0 == 0, cost: 4 Applied chaining First rule: l7 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : x_5^0'=y_6^0, -x_5^0+y_6^0 >= 0, cost: -2*x_5^0+2*y_6^0 New rule: l7 -> l1 : x_5^0'=y_6^0, -x_5^0+y_6^0 >= 0, cost: 2-2*x_5^0+2*y_6^0 Applied deletion Removed the following rules: 17 20 Chained accelerated rules with incoming rules Start location: l7 16: l7 -> l1 : TRUE, cost: 2 21: l7 -> l1 : x_5^0'=1+x_5^0, x_5^0-y_6^0 == 0, cost: 4 22: l7 -> l1 : x_5^0'=y_6^0, -x_5^0+y_6^0 >= 0, cost: 2-2*x_5^0+2*y_6^0 Removed unreachable locations and irrelevant leafs Start location: l7 Computing asymptotic complexity Proved the following lower bound Complexity: Unknown Cpx degree: ? Solved cost: 0 Rule cost: 0