WORST_CASE(Omega(0),?) Initial ITS Start location: l4 0: l0 -> l1 : y^0'=y^post0, x^0'=x^post0, z^0'=z^post0, (z^0-z^post0 == 0 /\ x^0-x^post0 == 0 /\ y^0-y^post0 == 0), cost: 1 4: l1 -> l2 : y^0'=y^post4, x^0'=x^post4, z^0'=z^post4, (-x^post4+x^0 == 0 /\ 1-y^0+x^0 <= 0 /\ -z^post4+z^0 == 0 /\ -y^post4+y^0 == 0), cost: 1 1: l2 -> l1 : y^0'=y^post1, x^0'=x^post1, z^0'=z^post1, (-1-x^0+x^post1 == 0 /\ z^0-z^post1 == 0 /\ y^0-y^post1 == 0 /\ -y^0+z^0 <= 0), cost: 1 2: l2 -> l3 : y^0'=y^post2, x^0'=x^post2, z^0'=z^post2, (z^0-z^post2 == 0 /\ 1+y^0-z^0 <= 0 /\ -1-y^0+y^post2 == 0 /\ -x^post2+x^0 == 0), cost: 1 3: l3 -> l2 : y^0'=y^post3, x^0'=x^post3, z^0'=z^post3, (-x^post3+x^0 == 0 /\ -y^post3+y^0 == 0 /\ -z^post3+z^0 == 0), cost: 1 5: l4 -> l0 : y^0'=y^post5, x^0'=x^post5, z^0'=z^post5, (-x^post5+x^0 == 0 /\ -z^post5+z^0 == 0 /\ -y^post5+y^0 == 0), cost: 1 Applied preprocessing Original rule: l0 -> l1 : y^0'=y^post0, x^0'=x^post0, z^0'=z^post0, (z^0-z^post0 == 0 /\ x^0-x^post0 == 0 /\ y^0-y^post0 == 0), cost: 1 New rule: l0 -> l1 : TRUE, cost: 1 Applied preprocessing Original rule: l2 -> l1 : y^0'=y^post1, x^0'=x^post1, z^0'=z^post1, (-1-x^0+x^post1 == 0 /\ z^0-z^post1 == 0 /\ y^0-y^post1 == 0 /\ -y^0+z^0 <= 0), cost: 1 New rule: l2 -> l1 : x^0'=1+x^0, -y^0+z^0 <= 0, cost: 1 Applied preprocessing Original rule: l2 -> l3 : y^0'=y^post2, x^0'=x^post2, z^0'=z^post2, (z^0-z^post2 == 0 /\ 1+y^0-z^0 <= 0 /\ -1-y^0+y^post2 == 0 /\ -x^post2+x^0 == 0), cost: 1 New rule: l2 -> l3 : y^0'=1+y^0, 1+y^0-z^0 <= 0, cost: 1 Applied preprocessing Original rule: l3 -> l2 : y^0'=y^post3, x^0'=x^post3, z^0'=z^post3, (-x^post3+x^0 == 0 /\ -y^post3+y^0 == 0 /\ -z^post3+z^0 == 0), cost: 1 New rule: l3 -> l2 : TRUE, cost: 1 Applied preprocessing Original rule: l1 -> l2 : y^0'=y^post4, x^0'=x^post4, z^0'=z^post4, (-x^post4+x^0 == 0 /\ 1-y^0+x^0 <= 0 /\ -z^post4+z^0 == 0 /\ -y^post4+y^0 == 0), cost: 1 New rule: l1 -> l2 : 1-y^0+x^0 <= 0, cost: 1 Applied preprocessing Original rule: l4 -> l0 : y^0'=y^post5, x^0'=x^post5, z^0'=z^post5, (-x^post5+x^0 == 0 /\ -z^post5+z^0 == 0 /\ -y^post5+y^0 == 0), cost: 1 New rule: l4 -> l0 : TRUE, cost: 1 Simplified rules Start location: l4 6: l0 -> l1 : TRUE, cost: 1 10: l1 -> l2 : 1-y^0+x^0 <= 0, cost: 1 7: l2 -> l1 : x^0'=1+x^0, -y^0+z^0 <= 0, cost: 1 8: l2 -> l3 : y^0'=1+y^0, 1+y^0-z^0 <= 0, cost: 1 9: l3 -> l2 : TRUE, cost: 1 11: l4 -> l0 : TRUE, cost: 1 Eliminating location l0 by chaining: Applied chaining First rule: l4 -> l0 : TRUE, cost: 1 Second rule: l0 -> l1 : TRUE, cost: 1 New rule: l4 -> l1 : TRUE, cost: 2 Applied deletion Removed the following rules: 6 11 Eliminating location l3 by chaining: Applied chaining First rule: l2 -> l3 : y^0'=1+y^0, 1+y^0-z^0 <= 0, cost: 1 Second rule: l3 -> l2 : TRUE, cost: 1 New rule: l2 -> l2 : y^0'=1+y^0, 1+y^0-z^0 <= 0, cost: 2 Applied deletion Removed the following rules: 8 9 Eliminated locations on linear paths Start location: l4 10: l1 -> l2 : 1-y^0+x^0 <= 0, cost: 1 7: l2 -> l1 : x^0'=1+x^0, -y^0+z^0 <= 0, cost: 1 13: l2 -> l2 : y^0'=1+y^0, 1+y^0-z^0 <= 0, cost: 2 12: l4 -> l1 : TRUE, cost: 2 Applied acceleration Original rule: l2 -> l2 : y^0'=1+y^0, 1+y^0-z^0 <= 0, cost: 2 New rule: l2 -> l2 : y^0'=y^0+n, (-y^0+z^0-n >= 0 /\ n >= 0), cost: 2*n Sub-proof via acceration calculus written to file:///tmp/tmpnam_APHOko.txt Applied instantiation Original rule: l2 -> l2 : y^0'=y^0+n, (-y^0+z^0-n >= 0 /\ n >= 0), cost: 2*n New rule: l2 -> l2 : y^0'=z^0, (0 >= 0 /\ -y^0+z^0 >= 0), cost: -2*y^0+2*z^0 Applied simplification Original rule: l2 -> l2 : y^0'=z^0, (0 >= 0 /\ -y^0+z^0 >= 0), cost: -2*y^0+2*z^0 New rule: l2 -> l2 : y^0'=z^0, -y^0+z^0 >= 0, cost: -2*y^0+2*z^0 Applied deletion Removed the following rules: 13 Accelerated simple loops Start location: l4 10: l1 -> l2 : 1-y^0+x^0 <= 0, cost: 1 7: l2 -> l1 : x^0'=1+x^0, -y^0+z^0 <= 0, cost: 1 15: l2 -> l2 : y^0'=z^0, -y^0+z^0 >= 0, cost: -2*y^0+2*z^0 12: l4 -> l1 : TRUE, cost: 2 Applied chaining First rule: l1 -> l2 : 1-y^0+x^0 <= 0, cost: 1 Second rule: l2 -> l2 : y^0'=z^0, -y^0+z^0 >= 0, cost: -2*y^0+2*z^0 New rule: l1 -> l2 : y^0'=z^0, (1-y^0+x^0 <= 0 /\ -y^0+z^0 >= 0), cost: 1-2*y^0+2*z^0 Applied deletion Removed the following rules: 15 Chained accelerated rules with incoming rules Start location: l4 10: l1 -> l2 : 1-y^0+x^0 <= 0, cost: 1 16: l1 -> l2 : y^0'=z^0, (1-y^0+x^0 <= 0 /\ -y^0+z^0 >= 0), cost: 1-2*y^0+2*z^0 7: l2 -> l1 : x^0'=1+x^0, -y^0+z^0 <= 0, cost: 1 12: l4 -> l1 : TRUE, cost: 2 Eliminating location l2 by chaining: Applied chaining First rule: l1 -> l2 : 1-y^0+x^0 <= 0, cost: 1 Second rule: l2 -> l1 : x^0'=1+x^0, -y^0+z^0 <= 0, cost: 1 New rule: l1 -> l1 : x^0'=1+x^0, (1-y^0+x^0 <= 0 /\ -y^0+z^0 <= 0), cost: 2 Applied chaining First rule: l1 -> l2 : y^0'=z^0, (1-y^0+x^0 <= 0 /\ -y^0+z^0 >= 0), cost: 1-2*y^0+2*z^0 Second rule: l2 -> l1 : x^0'=1+x^0, -y^0+z^0 <= 0, cost: 1 New rule: l1 -> l1 : y^0'=z^0, x^0'=1+x^0, (0 <= 0 /\ 1-y^0+x^0 <= 0 /\ -y^0+z^0 >= 0), cost: 2-2*y^0+2*z^0 Applied simplification Original rule: l1 -> l1 : y^0'=z^0, x^0'=1+x^0, (0 <= 0 /\ 1-y^0+x^0 <= 0 /\ -y^0+z^0 >= 0), cost: 2-2*y^0+2*z^0 New rule: l1 -> l1 : y^0'=z^0, x^0'=1+x^0, (1-y^0+x^0 <= 0 /\ -y^0+z^0 >= 0), cost: 2-2*y^0+2*z^0 Applied deletion Removed the following rules: 7 10 16 Eliminated locations on tree-shaped paths Start location: l4 17: l1 -> l1 : x^0'=1+x^0, (1-y^0+x^0 <= 0 /\ -y^0+z^0 <= 0), cost: 2 18: l1 -> l1 : y^0'=z^0, x^0'=1+x^0, (1-y^0+x^0 <= 0 /\ -y^0+z^0 >= 0), cost: 2-2*y^0+2*z^0 12: l4 -> l1 : TRUE, cost: 2 Applied acceleration Original rule: l1 -> l1 : x^0'=1+x^0, (1-y^0+x^0 <= 0 /\ -y^0+z^0 <= 0), cost: 2 New rule: l1 -> l1 : x^0'=n0+x^0, (n0 >= 0 /\ y^0-n0-x^0 >= 0 /\ y^0-z^0 >= 0), cost: 2*n0 Sub-proof via acceration calculus written to file:///tmp/tmpnam_PDkPDb.txt Applied instantiation Original rule: l1 -> l1 : x^0'=n0+x^0, (n0 >= 0 /\ y^0-n0-x^0 >= 0 /\ y^0-z^0 >= 0), cost: 2*n0 New rule: l1 -> l1 : x^0'=y^0, (0 >= 0 /\ y^0-x^0 >= 0 /\ y^0-z^0 >= 0), cost: 2*y^0-2*x^0 Applied acceleration Original rule: l1 -> l1 : y^0'=z^0, x^0'=1+x^0, (1-y^0+x^0 <= 0 /\ -y^0+z^0 >= 0), cost: 2-2*y^0+2*z^0 New rule: l1 -> l1 : y^0'=z^0, x^0'=x^0+n1, (-x^0-n1+z^0 >= 0 /\ -1+n1 >= 0 /\ -y^0+z^0 >= 0 /\ -1+y^0-x^0 >= 0), cost: 2*n1 Sub-proof via acceration calculus written to file:///tmp/tmpnam_NkdnhE.txt Applied instantiation Original rule: l1 -> l1 : y^0'=z^0, x^0'=x^0+n1, (-x^0-n1+z^0 >= 0 /\ -1+n1 >= 0 /\ -y^0+z^0 >= 0 /\ -1+y^0-x^0 >= 0), cost: 2*n1 New rule: l1 -> l1 : y^0'=z^0, x^0'=z^0, (0 >= 0 /\ -1-x^0+z^0 >= 0 /\ -y^0+z^0 >= 0 /\ -1+y^0-x^0 >= 0), cost: -2*x^0+2*z^0 Applied simplification Original rule: l1 -> l1 : x^0'=y^0, (0 >= 0 /\ y^0-x^0 >= 0 /\ y^0-z^0 >= 0), cost: 2*y^0-2*x^0 New rule: l1 -> l1 : x^0'=y^0, (y^0-x^0 >= 0 /\ y^0-z^0 >= 0), cost: 2*y^0-2*x^0 Applied simplification Original rule: l1 -> l1 : y^0'=z^0, x^0'=z^0, (0 >= 0 /\ -1-x^0+z^0 >= 0 /\ -y^0+z^0 >= 0 /\ -1+y^0-x^0 >= 0), cost: -2*x^0+2*z^0 New rule: l1 -> l1 : y^0'=z^0, x^0'=z^0, (-y^0+z^0 >= 0 /\ -1+y^0-x^0 >= 0), cost: -2*x^0+2*z^0 Applied deletion Removed the following rules: 17 18 Accelerated simple loops Start location: l4 21: l1 -> l1 : x^0'=y^0, (y^0-x^0 >= 0 /\ y^0-z^0 >= 0), cost: 2*y^0-2*x^0 22: l1 -> l1 : y^0'=z^0, x^0'=z^0, (-y^0+z^0 >= 0 /\ -1+y^0-x^0 >= 0), cost: -2*x^0+2*z^0 12: l4 -> l1 : TRUE, cost: 2 Applied chaining First rule: l4 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : x^0'=y^0, (y^0-x^0 >= 0 /\ y^0-z^0 >= 0), cost: 2*y^0-2*x^0 New rule: l4 -> l1 : x^0'=y^0, (y^0-x^0 >= 0 /\ y^0-z^0 >= 0), cost: 2+2*y^0-2*x^0 Applied chaining First rule: l4 -> l1 : TRUE, cost: 2 Second rule: l1 -> l1 : y^0'=z^0, x^0'=z^0, (-y^0+z^0 >= 0 /\ -1+y^0-x^0 >= 0), cost: -2*x^0+2*z^0 New rule: l4 -> l1 : y^0'=z^0, x^0'=z^0, (-y^0+z^0 >= 0 /\ -1+y^0-x^0 >= 0), cost: 2-2*x^0+2*z^0 Applied deletion Removed the following rules: 21 22 Chained accelerated rules with incoming rules Start location: l4 12: l4 -> l1 : TRUE, cost: 2 23: l4 -> l1 : x^0'=y^0, (y^0-x^0 >= 0 /\ y^0-z^0 >= 0), cost: 2+2*y^0-2*x^0 24: l4 -> l1 : y^0'=z^0, x^0'=z^0, (-y^0+z^0 >= 0 /\ -1+y^0-x^0 >= 0), cost: 2-2*x^0+2*z^0 Removed unreachable locations and irrelevant leafs Start location: l4 Computing asymptotic complexity Proved the following lower bound Complexity: Unknown Cpx degree: ? Solved cost: 0 Rule cost: 0