unknown Initial ITS Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 0: l0 -> l1 : oldx0^0'=oldx0^post1, oldx1^0'=oldx1^post1, oldx2^0'=oldx2^post1, oldx3^0'=oldx3^post1, x0^0'=x0^post1, x1^0'=x1^post1, (oldx1^post1 <= 0 /\ oldx1^post1-x1^0 == 0 /\ oldx3^0-oldx3^post1 == 0 /\ -oldx2^post1+oldx2^0 == 0 /\ oldx0^post1-x0^0 == 0 /\ x0^post1-oldx0^post1 == 0 /\ -oldx1^post1+x1^post1 == 0), cost: 1 1: l0 -> l1 : oldx0^0'=oldx0^post2, oldx1^0'=oldx1^post2, oldx2^0'=oldx2^post2, oldx3^0'=oldx3^post2, x0^0'=x0^post2, x1^0'=x1^post2, (oldx0^post2-x0^0 == 0 /\ -oldx2^post2+oldx2^0 == 0 /\ x1^post2-oldx1^post2 == 0 /\ -oldx0^post2+x0^post2 == 0 /\ -x1^0+oldx1^post2 == 0 /\ oldx3^0-oldx3^post2 == 0 /\ -oldx1^post2 <= 0 /\ oldx1^post2 <= 0), cost: 1 2: l0 -> l2 : oldx0^0'=oldx0^post3, oldx1^0'=oldx1^post3, oldx2^0'=oldx2^post3, oldx3^0'=oldx3^post3, x0^0'=x0^post3, x1^0'=x1^post3, (oldx3^0-oldx3^post3 == 0 /\ -oldx0^post3+x0^post3 == 0 /\ -oldx1^post3+x1^post3 == 0 /\ oldx0^post3-x0^0 == 0 /\ -oldx2^post3+oldx2^0 == 0 /\ 1-oldx1^post3 <= 0 /\ -x1^0+oldx1^post3 == 0), cost: 1 3: l0 -> l2 : oldx0^0'=oldx0^post4, oldx1^0'=oldx1^post4, oldx2^0'=oldx2^post4, oldx3^0'=oldx3^post4, x0^0'=x0^post4, x1^0'=x1^post4, (1-oldx1^post4 <= 0 /\ oldx1^post4-x1^0 == 0 /\ -oldx1^post4+x1^post4 == 0 /\ oldx0^post4-x0^0 == 0 /\ oldx3^0-oldx3^post4 == 0 /\ oldx2^0-oldx2^post4 == 0 /\ 1+oldx1^post4 <= 0 /\ -oldx0^post4+x0^post4 == 0), cost: 1 14: l1 -> l11 : oldx0^0'=oldx0^post15, oldx1^0'=oldx1^post15, oldx2^0'=oldx2^post15, oldx3^0'=oldx3^post15, x0^0'=x0^post15, x1^0'=x1^post15, (0 == 0 /\ x0^post15-oldx2^post15 == 0 /\ -oldx3^post15+x1^post15 == 0 /\ oldx0^post15-x0^0 == 0 /\ oldx1^post15-x1^0 == 0), cost: 1 15: l2 -> l11 : oldx0^0'=oldx0^post16, oldx1^0'=oldx1^post16, oldx2^0'=oldx2^post16, oldx3^0'=oldx3^post16, x0^0'=x0^post16, x1^0'=x1^post16, (0 == 0 /\ x1^post16-oldx3^post16 == 0 /\ oldx1^post16-x1^0 == 0 /\ oldx0^post16-x0^0 == 0 /\ x0^post16-oldx2^post16 == 0), cost: 1 16: l2 -> l3 : oldx0^0'=oldx0^post17, oldx1^0'=oldx1^post17, oldx2^0'=oldx2^post17, oldx3^0'=oldx3^post17, x0^0'=x0^post17, x1^0'=x1^post17, (x0^post17-oldx0^post17 == 0 /\ oldx0^post17-x0^0 == 0 /\ 1-oldx1^post17+x1^post17 == 0 /\ oldx3^0-oldx3^post17 == 0 /\ oldx2^0-oldx2^post17 == 0 /\ oldx1^post17-x1^0 == 0), cost: 1 4: l3 -> l0 : oldx0^0'=oldx0^post5, oldx1^0'=oldx1^post5, oldx2^0'=oldx2^post5, oldx3^0'=oldx3^post5, x0^0'=x0^post5, x1^0'=x1^post5, (oldx2^0-oldx2^post5 == 0 /\ -oldx3^post5+oldx3^0 == 0 /\ -oldx1^post5+x1^post5 == 0 /\ -oldx0^post5+x0^post5 == 0 /\ oldx0^post5-x0^0 == 0 /\ oldx1^post5-x1^0 == 0), cost: 1 5: l4 -> l5 : oldx0^0'=oldx0^post6, oldx1^0'=oldx1^post6, oldx2^0'=oldx2^post6, oldx3^0'=oldx3^post6, x0^0'=x0^post6, x1^0'=x1^post6, (0 == 0 /\ x0^post6-oldx2^post6 == 0 /\ oldx0^post6-x0^0 == 0 /\ oldx1^post6-x1^0 == 0 /\ x1^post6-oldx3^post6 == 0), cost: 1 6: l6 -> l5 : oldx0^0'=oldx0^post7, oldx1^0'=oldx1^post7, oldx2^0'=oldx2^post7, oldx3^0'=oldx3^post7, x0^0'=x0^post7, x1^0'=x1^post7, (0 == 0 /\ oldx0^post7-x0^0 == 0 /\ x1^post7-oldx3^post7 == 0 /\ oldx1^post7-x1^0 == 0 /\ x0^post7-oldx2^post7 == 0), cost: 1 7: l6 -> l7 : oldx0^0'=oldx0^post8, oldx1^0'=oldx1^post8, oldx2^0'=oldx2^post8, oldx3^0'=oldx3^post8, x0^0'=x0^post8, x1^0'=x1^post8, (oldx1^post8-x1^0 == 0 /\ oldx0^post8-x0^0 == 0 /\ oldx3^0-oldx3^post8 == 0 /\ -oldx2^post8+oldx2^0 == 0 /\ -oldx1^post8+x1^post8 == 0 /\ 1+x0^post8-oldx0^post8 == 0), cost: 1 17: l7 -> l10 : oldx0^0'=oldx0^post18, oldx1^0'=oldx1^post18, oldx2^0'=oldx2^post18, oldx3^0'=oldx3^post18, x0^0'=x0^post18, x1^0'=x1^post18, (oldx1^post18-x1^0 == 0 /\ oldx0^post18-x0^0 == 0 /\ oldx3^0-oldx3^post18 == 0 /\ -oldx2^post18+oldx2^0 == 0 /\ x0^post18-oldx0^post18 == 0 /\ -oldx1^post18+x1^post18 == 0), cost: 1 8: l8 -> l4 : oldx0^0'=oldx0^post9, oldx1^0'=oldx1^post9, oldx2^0'=oldx2^post9, oldx3^0'=oldx3^post9, x0^0'=x0^post9, x1^0'=x1^post9, (-oldx1^post9+x1^post9 == 0 /\ oldx3^0-oldx3^post9 == 0 /\ oldx0^post9-x0^0 == 0 /\ oldx1^post9-x1^0 == 0 /\ oldx2^0-oldx2^post9 == 0 /\ x0^post9-oldx0^post9 == 0 /\ oldx0^post9 <= 0), cost: 1 9: l8 -> l6 : oldx0^0'=oldx0^post10, oldx1^0'=oldx1^post10, oldx2^0'=oldx2^post10, oldx3^0'=oldx3^post10, x0^0'=x0^post10, x1^0'=x1^post10, (-oldx1^post10+x1^post10 == 0 /\ oldx3^0-oldx3^post10 == 0 /\ 1-oldx0^post10 <= 0 /\ oldx1^post10-x1^0 == 0 /\ oldx0^post10-x0^0 == 0 /\ -oldx2^post10+oldx2^0 == 0 /\ x0^post10-oldx0^post10 == 0), cost: 1 10: l9 -> l5 : oldx0^0'=oldx0^post11, oldx1^0'=oldx1^post11, oldx2^0'=oldx2^post11, oldx3^0'=oldx3^post11, x0^0'=x0^post11, x1^0'=x1^post11, (0 == 0 /\ x1^post11-oldx3^post11 == 0 /\ oldx0^post11-x0^0 == 0 /\ -x1^0+oldx1^post11 == 0 /\ x0^post11-oldx2^post11 == 0), cost: 1 11: l9 -> l7 : oldx0^0'=oldx0^post12, oldx1^0'=oldx1^post12, oldx2^0'=oldx2^post12, oldx3^0'=oldx3^post12, x0^0'=x0^post12, x1^0'=x1^post12, (oldx0^post12-x0^0 == 0 /\ -oldx2^post12+oldx2^0 == 0 /\ 1+x1^post12-oldx1^post12 == 0 /\ -oldx0^post12+x0^post12 == 0 /\ -x1^0+oldx1^post12 == 0 /\ oldx3^0-oldx3^post12 == 0), cost: 1 12: l10 -> l8 : oldx0^0'=oldx0^post13, oldx1^0'=oldx1^post13, oldx2^0'=oldx2^post13, oldx3^0'=oldx3^post13, x0^0'=x0^post13, x1^0'=x1^post13, (oldx3^0-oldx3^post13 == 0 /\ -oldx2^post13+oldx2^0 == 0 /\ oldx0^post13-x0^0 == 0 /\ -oldx0^post13+x0^post13 == 0 /\ oldx1^post13 <= 0 /\ x1^post13-oldx1^post13 == 0 /\ -x1^0+oldx1^post13 == 0), cost: 1 13: l10 -> l9 : oldx0^0'=oldx0^post14, oldx1^0'=oldx1^post14, oldx2^0'=oldx2^post14, oldx3^0'=oldx3^post14, x0^0'=x0^post14, x1^0'=x1^post14, (-x1^0+oldx1^post14 == 0 /\ -oldx1^post14+x1^post14 == 0 /\ 1-oldx1^post14 <= 0 /\ oldx3^0-oldx3^post14 == 0 /\ -oldx0^post14+x0^post14 == 0 /\ oldx2^0-oldx2^post14 == 0 /\ oldx0^post14-x0^0 == 0), cost: 1 18: l12 -> l0 : oldx0^0'=oldx0^post19, oldx1^0'=oldx1^post19, oldx2^0'=oldx2^post19, oldx3^0'=oldx3^post19, x0^0'=x0^post19, x1^0'=x1^post19, (-x0^post19+x0^0 == 0 /\ -oldx2^post19+oldx2^0 == 0 /\ -oldx0^post19+oldx0^0 == 0 /\ -x1^post19+x1^0 == 0 /\ oldx3^0-oldx3^post19 == 0 /\ oldx1^0-oldx1^post19 == 0), cost: 1 19: l12 -> l3 : oldx0^0'=oldx0^post20, oldx1^0'=oldx1^post20, oldx2^0'=oldx2^post20, oldx3^0'=oldx3^post20, x0^0'=x0^post20, x1^0'=x1^post20, (oldx1^0-oldx1^post20 == 0 /\ -x1^post20+x1^0 == 0 /\ oldx3^0-oldx3^post20 == 0 /\ -oldx2^post20+oldx2^0 == 0 /\ oldx0^0-oldx0^post20 == 0 /\ -x0^post20+x0^0 == 0), cost: 1 20: l12 -> l4 : oldx0^0'=oldx0^post21, oldx1^0'=oldx1^post21, oldx2^0'=oldx2^post21, oldx3^0'=oldx3^post21, x0^0'=x0^post21, x1^0'=x1^post21, (-oldx0^post21+oldx0^0 == 0 /\ -oldx2^post21+oldx2^0 == 0 /\ -x0^post21+x0^0 == 0 /\ -x1^post21+x1^0 == 0 /\ oldx3^0-oldx3^post21 == 0 /\ oldx1^0-oldx1^post21 == 0), cost: 1 21: l12 -> l6 : oldx0^0'=oldx0^post22, oldx1^0'=oldx1^post22, oldx2^0'=oldx2^post22, oldx3^0'=oldx3^post22, x0^0'=x0^post22, x1^0'=x1^post22, (oldx1^0-oldx1^post22 == 0 /\ -x0^post22+x0^0 == 0 /\ -x1^post22+x1^0 == 0 /\ -oldx0^post22+oldx0^0 == 0 /\ -oldx2^post22+oldx2^0 == 0 /\ oldx3^0-oldx3^post22 == 0), cost: 1 22: l12 -> l5 : oldx0^0'=oldx0^post23, oldx1^0'=oldx1^post23, oldx2^0'=oldx2^post23, oldx3^0'=oldx3^post23, x0^0'=x0^post23, x1^0'=x1^post23, (-x0^post23+x0^0 == 0 /\ -x1^post23+x1^0 == 0 /\ oldx3^0-oldx3^post23 == 0 /\ -oldx2^post23+oldx2^0 == 0 /\ -oldx0^post23+oldx0^0 == 0 /\ oldx1^0-oldx1^post23 == 0), cost: 1 23: l12 -> l8 : oldx0^0'=oldx0^post24, oldx1^0'=oldx1^post24, oldx2^0'=oldx2^post24, oldx3^0'=oldx3^post24, x0^0'=x0^post24, x1^0'=x1^post24, (oldx1^0-oldx1^post24 == 0 /\ oldx3^0-oldx3^post24 == 0 /\ oldx2^0-oldx2^post24 == 0 /\ -x0^post24+x0^0 == 0 /\ x1^0-x1^post24 == 0 /\ -oldx0^post24+oldx0^0 == 0), cost: 1 24: l12 -> l9 : oldx0^0'=oldx0^post25, oldx1^0'=oldx1^post25, oldx2^0'=oldx2^post25, oldx3^0'=oldx3^post25, x0^0'=x0^post25, x1^0'=x1^post25, (oldx2^0-oldx2^post25 == 0 /\ x1^0-x1^post25 == 0 /\ -oldx3^post25+oldx3^0 == 0 /\ -x0^post25+x0^0 == 0 /\ oldx1^0-oldx1^post25 == 0 /\ -oldx0^post25+oldx0^0 == 0), cost: 1 25: l12 -> l10 : oldx0^0'=oldx0^post26, oldx1^0'=oldx1^post26, oldx2^0'=oldx2^post26, oldx3^0'=oldx3^post26, x0^0'=x0^post26, x1^0'=x1^post26, (oldx3^0-oldx3^post26 == 0 /\ oldx1^0-oldx1^post26 == 0 /\ oldx2^0-oldx2^post26 == 0 /\ -x0^post26+x0^0 == 0 /\ oldx0^0-oldx0^post26 == 0 /\ -x1^post26+x1^0 == 0), cost: 1 26: l12 -> l11 : oldx0^0'=oldx0^post27, oldx1^0'=oldx1^post27, oldx2^0'=oldx2^post27, oldx3^0'=oldx3^post27, x0^0'=x0^post27, x1^0'=x1^post27, (oldx1^0-oldx1^post27 == 0 /\ -x0^post27+x0^0 == 0 /\ oldx3^0-oldx3^post27 == 0 /\ -oldx2^post27+oldx2^0 == 0 /\ -x1^post27+x1^0 == 0 /\ oldx0^0-oldx0^post27 == 0), cost: 1 27: l12 -> l1 : oldx0^0'=oldx0^post28, oldx1^0'=oldx1^post28, oldx2^0'=oldx2^post28, oldx3^0'=oldx3^post28, x0^0'=x0^post28, x1^0'=x1^post28, (-x1^post28+x1^0 == 0 /\ -oldx1^post28+oldx1^0 == 0 /\ -oldx2^post28+oldx2^0 == 0 /\ x0^0-x0^post28 == 0 /\ -oldx0^post28+oldx0^0 == 0 /\ oldx3^0-oldx3^post28 == 0), cost: 1 28: l12 -> l2 : oldx0^0'=oldx0^post29, oldx1^0'=oldx1^post29, oldx2^0'=oldx2^post29, oldx3^0'=oldx3^post29, x0^0'=x0^post29, x1^0'=x1^post29, (-x0^post29+x0^0 == 0 /\ -x1^post29+x1^0 == 0 /\ -oldx2^post29+oldx2^0 == 0 /\ -oldx0^post29+oldx0^0 == 0 /\ oldx3^0-oldx3^post29 == 0 /\ oldx1^0-oldx1^post29 == 0), cost: 1 29: l12 -> l7 : oldx0^0'=oldx0^post30, oldx1^0'=oldx1^post30, oldx2^0'=oldx2^post30, oldx3^0'=oldx3^post30, x0^0'=x0^post30, x1^0'=x1^post30, (-x1^post30+x1^0 == 0 /\ -oldx0^post30+oldx0^0 == 0 /\ oldx3^0-oldx3^post30 == 0 /\ -oldx2^post30+oldx2^0 == 0 /\ oldx1^0-oldx1^post30 == 0 /\ -x0^post30+x0^0 == 0), cost: 1 30: l13 -> l12 : oldx0^0'=oldx0^post31, oldx1^0'=oldx1^post31, oldx2^0'=oldx2^post31, oldx3^0'=oldx3^post31, x0^0'=x0^post31, x1^0'=x1^post31, (-oldx2^post31+oldx2^0 == 0 /\ -oldx0^post31+oldx0^0 == 0 /\ -x0^post31+x0^0 == 0 /\ oldx1^0-oldx1^post31 == 0 /\ oldx3^0-oldx3^post31 == 0 /\ -x1^post31+x1^0 == 0), cost: 1 Simplified Transitions Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : oldx0^0'=oldx0^post1, oldx1^0'=oldx1^post1, oldx2^0'=oldx2^post1, oldx3^0'=oldx3^post1, x0^0'=x0^post1, x1^0'=x1^post1, (oldx1^post1 <= 0 /\ oldx1^post1-x1^0 == 0 /\ oldx3^0-oldx3^post1 == 0 /\ -oldx2^post1+oldx2^0 == 0 /\ oldx0^post1-x0^0 == 0 /\ x0^post1-oldx0^post1 == 0 /\ -oldx1^post1+x1^post1 == 0), cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ x1^0 <= 0), cost: 1 propagated equality oldx1^post1 = x1^0 propagated equality oldx3^post1 = oldx3^0 propagated equality oldx2^post1 = oldx2^0 propagated equality oldx0^post1 = x0^0 propagated equality x0^post1 = x0^0 propagated equality x1^post1 = x1^0 Simplified Guard Original rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ x1^0 <= 0), cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, x1^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, x1^0 <= 0, cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 made implied equalities explicit Original rule: l0 -> l1 : oldx0^0'=oldx0^post2, oldx1^0'=oldx1^post2, oldx2^0'=oldx2^post2, oldx3^0'=oldx3^post2, x0^0'=x0^post2, x1^0'=x1^post2, (oldx0^post2-x0^0 == 0 /\ -oldx2^post2+oldx2^0 == 0 /\ x1^post2-oldx1^post2 == 0 /\ -oldx0^post2+x0^post2 == 0 /\ -x1^0+oldx1^post2 == 0 /\ oldx3^0-oldx3^post2 == 0 /\ -oldx1^post2 <= 0 /\ oldx1^post2 <= 0), cost: 1 New rule: l0 -> l1 : oldx0^0'=oldx0^post2, oldx1^0'=oldx1^post2, oldx2^0'=oldx2^post2, oldx3^0'=oldx3^post2, x0^0'=x0^post2, x1^0'=x1^post2, (oldx0^post2-x0^0 == 0 /\ -oldx2^post2+oldx2^0 == 0 /\ x1^post2-oldx1^post2 == 0 /\ -oldx0^post2+x0^post2 == 0 /\ -x1^0+oldx1^post2 == 0 /\ oldx3^0-oldx3^post2 == 0 /\ -oldx1^post2 <= 0 /\ -oldx1^post2 == 0 /\ oldx1^post2 <= 0), cost: 1 Propagated Equalities Original rule: l0 -> l1 : oldx0^0'=oldx0^post2, oldx1^0'=oldx1^post2, oldx2^0'=oldx2^post2, oldx3^0'=oldx3^post2, x0^0'=x0^post2, x1^0'=x1^post2, (oldx0^post2-x0^0 == 0 /\ -oldx2^post2+oldx2^0 == 0 /\ x1^post2-oldx1^post2 == 0 /\ -oldx0^post2+x0^post2 == 0 /\ -x1^0+oldx1^post2 == 0 /\ oldx3^0-oldx3^post2 == 0 /\ -oldx1^post2 <= 0 /\ -oldx1^post2 == 0 /\ oldx1^post2 <= 0), cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ -x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 propagated equality oldx0^post2 = x0^0 propagated equality oldx2^post2 = oldx2^0 propagated equality oldx1^post2 = x1^post2 propagated equality x0^post2 = x0^0 propagated equality x1^post2 = x1^0 propagated equality oldx3^post2 = oldx3^0 Simplified Guard Original rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ -x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 made implied equalities explicit Original rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 Propagated Equalities Original rule: l0 -> l2 : oldx0^0'=oldx0^post3, oldx1^0'=oldx1^post3, oldx2^0'=oldx2^post3, oldx3^0'=oldx3^post3, x0^0'=x0^post3, x1^0'=x1^post3, (oldx3^0-oldx3^post3 == 0 /\ -oldx0^post3+x0^post3 == 0 /\ -oldx1^post3+x1^post3 == 0 /\ oldx0^post3-x0^0 == 0 /\ -oldx2^post3+oldx2^0 == 0 /\ 1-oldx1^post3 <= 0 /\ -x1^0+oldx1^post3 == 0), cost: 1 New rule: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ 1-x1^0 <= 0), cost: 1 propagated equality oldx3^post3 = oldx3^0 propagated equality oldx0^post3 = x0^post3 propagated equality oldx1^post3 = x1^post3 propagated equality x0^post3 = x0^0 propagated equality oldx2^post3 = oldx2^0 propagated equality x1^post3 = x1^0 Simplified Guard Original rule: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ 1-x1^0 <= 0), cost: 1 New rule: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 1-x1^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 1-x1^0 <= 0, cost: 1 New rule: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 Propagated Equalities Original rule: l0 -> l2 : oldx0^0'=oldx0^post4, oldx1^0'=oldx1^post4, oldx2^0'=oldx2^post4, oldx3^0'=oldx3^post4, x0^0'=x0^post4, x1^0'=x1^post4, (1-oldx1^post4 <= 0 /\ oldx1^post4-x1^0 == 0 /\ -oldx1^post4+x1^post4 == 0 /\ oldx0^post4-x0^0 == 0 /\ oldx3^0-oldx3^post4 == 0 /\ oldx2^0-oldx2^post4 == 0 /\ 1+oldx1^post4 <= 0 /\ -oldx0^post4+x0^post4 == 0), cost: 1 New rule: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ 1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 propagated equality oldx1^post4 = x1^0 propagated equality x1^post4 = x1^0 propagated equality oldx0^post4 = x0^0 propagated equality oldx3^post4 = oldx3^0 propagated equality oldx2^post4 = oldx2^0 propagated equality x0^post4 = x0^0 Simplified Guard Original rule: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ 1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 New rule: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 Removed Trivial Updates Original rule: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 New rule: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 Propagated Equalities Original rule: l3 -> l0 : oldx0^0'=oldx0^post5, oldx1^0'=oldx1^post5, oldx2^0'=oldx2^post5, oldx3^0'=oldx3^post5, x0^0'=x0^post5, x1^0'=x1^post5, (oldx2^0-oldx2^post5 == 0 /\ -oldx3^post5+oldx3^0 == 0 /\ -oldx1^post5+x1^post5 == 0 /\ -oldx0^post5+x0^post5 == 0 /\ oldx0^post5-x0^0 == 0 /\ oldx1^post5-x1^0 == 0), cost: 1 New rule: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx2^post5 = oldx2^0 propagated equality oldx3^post5 = oldx3^0 propagated equality oldx1^post5 = x1^post5 propagated equality oldx0^post5 = x0^post5 propagated equality x0^post5 = x0^0 propagated equality x1^post5 = x1^0 Simplified Guard Original rule: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 Propagated Equalities Original rule: l4 -> l5 : oldx0^0'=oldx0^post6, oldx1^0'=oldx1^post6, oldx2^0'=oldx2^post6, oldx3^0'=oldx3^post6, x0^0'=x0^post6, x1^0'=x1^post6, (0 == 0 /\ x0^post6-oldx2^post6 == 0 /\ oldx0^post6-x0^0 == 0 /\ oldx1^post6-x1^0 == 0 /\ x1^post6-oldx3^post6 == 0), cost: 1 New rule: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, 0 == 0, cost: 1 propagated equality oldx2^post6 = x0^post6 propagated equality oldx0^post6 = x0^0 propagated equality oldx1^post6 = x1^0 propagated equality oldx3^post6 = x1^post6 Simplified Guard Original rule: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, 0 == 0, cost: 1 New rule: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 Propagated Equalities Original rule: l6 -> l5 : oldx0^0'=oldx0^post7, oldx1^0'=oldx1^post7, oldx2^0'=oldx2^post7, oldx3^0'=oldx3^post7, x0^0'=x0^post7, x1^0'=x1^post7, (0 == 0 /\ oldx0^post7-x0^0 == 0 /\ x1^post7-oldx3^post7 == 0 /\ oldx1^post7-x1^0 == 0 /\ x0^post7-oldx2^post7 == 0), cost: 1 New rule: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, 0 == 0, cost: 1 propagated equality oldx0^post7 = x0^0 propagated equality oldx3^post7 = x1^post7 propagated equality oldx1^post7 = x1^0 propagated equality oldx2^post7 = x0^post7 Simplified Guard Original rule: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, 0 == 0, cost: 1 New rule: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 Propagated Equalities Original rule: l6 -> l7 : oldx0^0'=oldx0^post8, oldx1^0'=oldx1^post8, oldx2^0'=oldx2^post8, oldx3^0'=oldx3^post8, x0^0'=x0^post8, x1^0'=x1^post8, (oldx1^post8-x1^0 == 0 /\ oldx0^post8-x0^0 == 0 /\ oldx3^0-oldx3^post8 == 0 /\ -oldx2^post8+oldx2^0 == 0 /\ -oldx1^post8+x1^post8 == 0 /\ 1+x0^post8-oldx0^post8 == 0), cost: 1 New rule: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=-1+x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx1^post8 = x1^0 propagated equality oldx0^post8 = x0^0 propagated equality oldx3^post8 = oldx3^0 propagated equality oldx2^post8 = oldx2^0 propagated equality x1^post8 = x1^0 propagated equality x0^post8 = -1+x0^0 Simplified Guard Original rule: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=-1+x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=-1+x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=-1+x0^0, x1^0'=x1^0, T, cost: 1 New rule: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 Propagated Equalities Original rule: l8 -> l4 : oldx0^0'=oldx0^post9, oldx1^0'=oldx1^post9, oldx2^0'=oldx2^post9, oldx3^0'=oldx3^post9, x0^0'=x0^post9, x1^0'=x1^post9, (-oldx1^post9+x1^post9 == 0 /\ oldx3^0-oldx3^post9 == 0 /\ oldx0^post9-x0^0 == 0 /\ oldx1^post9-x1^0 == 0 /\ oldx2^0-oldx2^post9 == 0 /\ x0^post9-oldx0^post9 == 0 /\ oldx0^post9 <= 0), cost: 1 New rule: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ x0^0 <= 0), cost: 1 propagated equality oldx1^post9 = x1^post9 propagated equality oldx3^post9 = oldx3^0 propagated equality oldx0^post9 = x0^0 propagated equality x1^post9 = x1^0 propagated equality oldx2^post9 = oldx2^0 propagated equality x0^post9 = x0^0 Simplified Guard Original rule: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ x0^0 <= 0), cost: 1 New rule: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, x0^0 <= 0, cost: 1 New rule: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l8 -> l6 : oldx0^0'=oldx0^post10, oldx1^0'=oldx1^post10, oldx2^0'=oldx2^post10, oldx3^0'=oldx3^post10, x0^0'=x0^post10, x1^0'=x1^post10, (-oldx1^post10+x1^post10 == 0 /\ oldx3^0-oldx3^post10 == 0 /\ 1-oldx0^post10 <= 0 /\ oldx1^post10-x1^0 == 0 /\ oldx0^post10-x0^0 == 0 /\ -oldx2^post10+oldx2^0 == 0 /\ x0^post10-oldx0^post10 == 0), cost: 1 New rule: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ 1-x0^0 <= 0), cost: 1 propagated equality oldx1^post10 = x1^post10 propagated equality oldx3^post10 = oldx3^0 propagated equality x1^post10 = x1^0 propagated equality oldx0^post10 = x0^0 propagated equality oldx2^post10 = oldx2^0 propagated equality x0^post10 = x0^0 Simplified Guard Original rule: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ 1-x0^0 <= 0), cost: 1 New rule: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 1-x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 1-x0^0 <= 0, cost: 1 New rule: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l9 -> l5 : oldx0^0'=oldx0^post11, oldx1^0'=oldx1^post11, oldx2^0'=oldx2^post11, oldx3^0'=oldx3^post11, x0^0'=x0^post11, x1^0'=x1^post11, (0 == 0 /\ x1^post11-oldx3^post11 == 0 /\ oldx0^post11-x0^0 == 0 /\ -x1^0+oldx1^post11 == 0 /\ x0^post11-oldx2^post11 == 0), cost: 1 New rule: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, 0 == 0, cost: 1 propagated equality oldx3^post11 = x1^post11 propagated equality oldx0^post11 = x0^0 propagated equality oldx1^post11 = x1^0 propagated equality oldx2^post11 = x0^post11 Simplified Guard Original rule: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, 0 == 0, cost: 1 New rule: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 Propagated Equalities Original rule: l9 -> l7 : oldx0^0'=oldx0^post12, oldx1^0'=oldx1^post12, oldx2^0'=oldx2^post12, oldx3^0'=oldx3^post12, x0^0'=x0^post12, x1^0'=x1^post12, (oldx0^post12-x0^0 == 0 /\ -oldx2^post12+oldx2^0 == 0 /\ 1+x1^post12-oldx1^post12 == 0 /\ -oldx0^post12+x0^post12 == 0 /\ -x1^0+oldx1^post12 == 0 /\ oldx3^0-oldx3^post12 == 0), cost: 1 New rule: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=-1+x1^0, 0 == 0, cost: 1 propagated equality oldx0^post12 = x0^0 propagated equality oldx2^post12 = oldx2^0 propagated equality oldx1^post12 = 1+x1^post12 propagated equality x0^post12 = x0^0 propagated equality x1^post12 = -1+x1^0 propagated equality oldx3^post12 = oldx3^0 Simplified Guard Original rule: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=-1+x1^0, 0 == 0, cost: 1 New rule: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=-1+x1^0, T, cost: 1 Removed Trivial Updates Original rule: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=-1+x1^0, T, cost: 1 New rule: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 Propagated Equalities Original rule: l10 -> l8 : oldx0^0'=oldx0^post13, oldx1^0'=oldx1^post13, oldx2^0'=oldx2^post13, oldx3^0'=oldx3^post13, x0^0'=x0^post13, x1^0'=x1^post13, (oldx3^0-oldx3^post13 == 0 /\ -oldx2^post13+oldx2^0 == 0 /\ oldx0^post13-x0^0 == 0 /\ -oldx0^post13+x0^post13 == 0 /\ oldx1^post13 <= 0 /\ x1^post13-oldx1^post13 == 0 /\ -x1^0+oldx1^post13 == 0), cost: 1 New rule: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ x1^0 <= 0), cost: 1 propagated equality oldx3^post13 = oldx3^0 propagated equality oldx2^post13 = oldx2^0 propagated equality oldx0^post13 = x0^0 propagated equality x0^post13 = x0^0 propagated equality oldx1^post13 = x1^post13 propagated equality x1^post13 = x1^0 Simplified Guard Original rule: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ x1^0 <= 0), cost: 1 New rule: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, x1^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, x1^0 <= 0, cost: 1 New rule: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 Propagated Equalities Original rule: l10 -> l9 : oldx0^0'=oldx0^post14, oldx1^0'=oldx1^post14, oldx2^0'=oldx2^post14, oldx3^0'=oldx3^post14, x0^0'=x0^post14, x1^0'=x1^post14, (-x1^0+oldx1^post14 == 0 /\ -oldx1^post14+x1^post14 == 0 /\ 1-oldx1^post14 <= 0 /\ oldx3^0-oldx3^post14 == 0 /\ -oldx0^post14+x0^post14 == 0 /\ oldx2^0-oldx2^post14 == 0 /\ oldx0^post14-x0^0 == 0), cost: 1 New rule: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ 1-x1^0 <= 0), cost: 1 propagated equality oldx1^post14 = x1^0 propagated equality x1^post14 = x1^0 propagated equality oldx3^post14 = oldx3^0 propagated equality oldx0^post14 = x0^post14 propagated equality oldx2^post14 = oldx2^0 propagated equality x0^post14 = x0^0 Simplified Guard Original rule: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ 1-x1^0 <= 0), cost: 1 New rule: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 1-x1^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 1-x1^0 <= 0, cost: 1 New rule: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 Propagated Equalities Original rule: l1 -> l11 : oldx0^0'=oldx0^post15, oldx1^0'=oldx1^post15, oldx2^0'=oldx2^post15, oldx3^0'=oldx3^post15, x0^0'=x0^post15, x1^0'=x1^post15, (0 == 0 /\ x0^post15-oldx2^post15 == 0 /\ -oldx3^post15+x1^post15 == 0 /\ oldx0^post15-x0^0 == 0 /\ oldx1^post15-x1^0 == 0), cost: 1 New rule: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, 0 == 0, cost: 1 propagated equality oldx2^post15 = x0^post15 propagated equality oldx3^post15 = x1^post15 propagated equality oldx0^post15 = x0^0 propagated equality oldx1^post15 = x1^0 Simplified Guard Original rule: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, 0 == 0, cost: 1 New rule: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 Propagated Equalities Original rule: l2 -> l11 : oldx0^0'=oldx0^post16, oldx1^0'=oldx1^post16, oldx2^0'=oldx2^post16, oldx3^0'=oldx3^post16, x0^0'=x0^post16, x1^0'=x1^post16, (0 == 0 /\ x1^post16-oldx3^post16 == 0 /\ oldx1^post16-x1^0 == 0 /\ oldx0^post16-x0^0 == 0 /\ x0^post16-oldx2^post16 == 0), cost: 1 New rule: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, 0 == 0, cost: 1 propagated equality oldx3^post16 = x1^post16 propagated equality oldx1^post16 = x1^0 propagated equality oldx0^post16 = x0^0 propagated equality oldx2^post16 = x0^post16 Simplified Guard Original rule: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, 0 == 0, cost: 1 New rule: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 Propagated Equalities Original rule: l2 -> l3 : oldx0^0'=oldx0^post17, oldx1^0'=oldx1^post17, oldx2^0'=oldx2^post17, oldx3^0'=oldx3^post17, x0^0'=x0^post17, x1^0'=x1^post17, (x0^post17-oldx0^post17 == 0 /\ oldx0^post17-x0^0 == 0 /\ 1-oldx1^post17+x1^post17 == 0 /\ oldx3^0-oldx3^post17 == 0 /\ oldx2^0-oldx2^post17 == 0 /\ oldx1^post17-x1^0 == 0), cost: 1 New rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=-1+x1^0, 0 == 0, cost: 1 propagated equality oldx0^post17 = x0^post17 propagated equality x0^post17 = x0^0 propagated equality oldx1^post17 = 1+x1^post17 propagated equality oldx3^post17 = oldx3^0 propagated equality oldx2^post17 = oldx2^0 propagated equality x1^post17 = -1+x1^0 Simplified Guard Original rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=-1+x1^0, 0 == 0, cost: 1 New rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=-1+x1^0, T, cost: 1 Removed Trivial Updates Original rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=-1+x1^0, T, cost: 1 New rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 Propagated Equalities Original rule: l7 -> l10 : oldx0^0'=oldx0^post18, oldx1^0'=oldx1^post18, oldx2^0'=oldx2^post18, oldx3^0'=oldx3^post18, x0^0'=x0^post18, x1^0'=x1^post18, (oldx1^post18-x1^0 == 0 /\ oldx0^post18-x0^0 == 0 /\ oldx3^0-oldx3^post18 == 0 /\ -oldx2^post18+oldx2^0 == 0 /\ x0^post18-oldx0^post18 == 0 /\ -oldx1^post18+x1^post18 == 0), cost: 1 New rule: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx1^post18 = x1^0 propagated equality oldx0^post18 = x0^0 propagated equality oldx3^post18 = oldx3^0 propagated equality oldx2^post18 = oldx2^0 propagated equality x0^post18 = x0^0 propagated equality x1^post18 = x1^0 Simplified Guard Original rule: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 Propagated Equalities Original rule: l12 -> l0 : oldx0^0'=oldx0^post19, oldx1^0'=oldx1^post19, oldx2^0'=oldx2^post19, oldx3^0'=oldx3^post19, x0^0'=x0^post19, x1^0'=x1^post19, (-x0^post19+x0^0 == 0 /\ -oldx2^post19+oldx2^0 == 0 /\ -oldx0^post19+oldx0^0 == 0 /\ -x1^post19+x1^0 == 0 /\ oldx3^0-oldx3^post19 == 0 /\ oldx1^0-oldx1^post19 == 0), cost: 1 New rule: l12 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality x0^post19 = x0^0 propagated equality oldx2^post19 = oldx2^0 propagated equality oldx0^post19 = oldx0^0 propagated equality x1^post19 = x1^0 propagated equality oldx3^post19 = oldx3^0 propagated equality oldx1^post19 = oldx1^0 Simplified Guard Original rule: l12 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l0 : T, cost: 1 Propagated Equalities Original rule: l12 -> l3 : oldx0^0'=oldx0^post20, oldx1^0'=oldx1^post20, oldx2^0'=oldx2^post20, oldx3^0'=oldx3^post20, x0^0'=x0^post20, x1^0'=x1^post20, (oldx1^0-oldx1^post20 == 0 /\ -x1^post20+x1^0 == 0 /\ oldx3^0-oldx3^post20 == 0 /\ -oldx2^post20+oldx2^0 == 0 /\ oldx0^0-oldx0^post20 == 0 /\ -x0^post20+x0^0 == 0), cost: 1 New rule: l12 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx1^post20 = oldx1^0 propagated equality x1^post20 = x1^0 propagated equality oldx3^post20 = oldx3^0 propagated equality oldx2^post20 = oldx2^0 propagated equality oldx0^post20 = oldx0^0 propagated equality x0^post20 = x0^0 Simplified Guard Original rule: l12 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l3 : T, cost: 1 Propagated Equalities Original rule: l12 -> l4 : oldx0^0'=oldx0^post21, oldx1^0'=oldx1^post21, oldx2^0'=oldx2^post21, oldx3^0'=oldx3^post21, x0^0'=x0^post21, x1^0'=x1^post21, (-oldx0^post21+oldx0^0 == 0 /\ -oldx2^post21+oldx2^0 == 0 /\ -x0^post21+x0^0 == 0 /\ -x1^post21+x1^0 == 0 /\ oldx3^0-oldx3^post21 == 0 /\ oldx1^0-oldx1^post21 == 0), cost: 1 New rule: l12 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx0^post21 = oldx0^0 propagated equality oldx2^post21 = oldx2^0 propagated equality x0^post21 = x0^0 propagated equality x1^post21 = x1^0 propagated equality oldx3^post21 = oldx3^0 propagated equality oldx1^post21 = oldx1^0 Simplified Guard Original rule: l12 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l4 : T, cost: 1 Propagated Equalities Original rule: l12 -> l6 : oldx0^0'=oldx0^post22, oldx1^0'=oldx1^post22, oldx2^0'=oldx2^post22, oldx3^0'=oldx3^post22, x0^0'=x0^post22, x1^0'=x1^post22, (oldx1^0-oldx1^post22 == 0 /\ -x0^post22+x0^0 == 0 /\ -x1^post22+x1^0 == 0 /\ -oldx0^post22+oldx0^0 == 0 /\ -oldx2^post22+oldx2^0 == 0 /\ oldx3^0-oldx3^post22 == 0), cost: 1 New rule: l12 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx1^post22 = oldx1^0 propagated equality x0^post22 = x0^0 propagated equality x1^post22 = x1^0 propagated equality oldx0^post22 = oldx0^0 propagated equality oldx2^post22 = oldx2^0 propagated equality oldx3^post22 = oldx3^0 Simplified Guard Original rule: l12 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l6 : T, cost: 1 Propagated Equalities Original rule: l12 -> l5 : oldx0^0'=oldx0^post23, oldx1^0'=oldx1^post23, oldx2^0'=oldx2^post23, oldx3^0'=oldx3^post23, x0^0'=x0^post23, x1^0'=x1^post23, (-x0^post23+x0^0 == 0 /\ -x1^post23+x1^0 == 0 /\ oldx3^0-oldx3^post23 == 0 /\ -oldx2^post23+oldx2^0 == 0 /\ -oldx0^post23+oldx0^0 == 0 /\ oldx1^0-oldx1^post23 == 0), cost: 1 New rule: l12 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality x0^post23 = x0^0 propagated equality x1^post23 = x1^0 propagated equality oldx3^post23 = oldx3^0 propagated equality oldx2^post23 = oldx2^0 propagated equality oldx0^post23 = oldx0^0 propagated equality oldx1^post23 = oldx1^0 Simplified Guard Original rule: l12 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l5 : T, cost: 1 Propagated Equalities Original rule: l12 -> l8 : oldx0^0'=oldx0^post24, oldx1^0'=oldx1^post24, oldx2^0'=oldx2^post24, oldx3^0'=oldx3^post24, x0^0'=x0^post24, x1^0'=x1^post24, (oldx1^0-oldx1^post24 == 0 /\ oldx3^0-oldx3^post24 == 0 /\ oldx2^0-oldx2^post24 == 0 /\ -x0^post24+x0^0 == 0 /\ x1^0-x1^post24 == 0 /\ -oldx0^post24+oldx0^0 == 0), cost: 1 New rule: l12 -> l8 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx1^post24 = oldx1^0 propagated equality oldx3^post24 = oldx3^0 propagated equality oldx2^post24 = oldx2^0 propagated equality x0^post24 = x0^0 propagated equality x1^post24 = x1^0 propagated equality oldx0^post24 = oldx0^0 Simplified Guard Original rule: l12 -> l8 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l8 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l8 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l8 : T, cost: 1 Propagated Equalities Original rule: l12 -> l9 : oldx0^0'=oldx0^post25, oldx1^0'=oldx1^post25, oldx2^0'=oldx2^post25, oldx3^0'=oldx3^post25, x0^0'=x0^post25, x1^0'=x1^post25, (oldx2^0-oldx2^post25 == 0 /\ x1^0-x1^post25 == 0 /\ -oldx3^post25+oldx3^0 == 0 /\ -x0^post25+x0^0 == 0 /\ oldx1^0-oldx1^post25 == 0 /\ -oldx0^post25+oldx0^0 == 0), cost: 1 New rule: l12 -> l9 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx2^post25 = oldx2^0 propagated equality x1^post25 = x1^0 propagated equality oldx3^post25 = oldx3^0 propagated equality x0^post25 = x0^0 propagated equality oldx1^post25 = oldx1^0 propagated equality oldx0^post25 = oldx0^0 Simplified Guard Original rule: l12 -> l9 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l9 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l9 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l9 : T, cost: 1 Propagated Equalities Original rule: l12 -> l10 : oldx0^0'=oldx0^post26, oldx1^0'=oldx1^post26, oldx2^0'=oldx2^post26, oldx3^0'=oldx3^post26, x0^0'=x0^post26, x1^0'=x1^post26, (oldx3^0-oldx3^post26 == 0 /\ oldx1^0-oldx1^post26 == 0 /\ oldx2^0-oldx2^post26 == 0 /\ -x0^post26+x0^0 == 0 /\ oldx0^0-oldx0^post26 == 0 /\ -x1^post26+x1^0 == 0), cost: 1 New rule: l12 -> l10 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx3^post26 = oldx3^0 propagated equality oldx1^post26 = oldx1^0 propagated equality oldx2^post26 = oldx2^0 propagated equality x0^post26 = x0^0 propagated equality oldx0^post26 = oldx0^0 propagated equality x1^post26 = x1^0 Simplified Guard Original rule: l12 -> l10 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l10 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l10 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l10 : T, cost: 1 Propagated Equalities Original rule: l12 -> l11 : oldx0^0'=oldx0^post27, oldx1^0'=oldx1^post27, oldx2^0'=oldx2^post27, oldx3^0'=oldx3^post27, x0^0'=x0^post27, x1^0'=x1^post27, (oldx1^0-oldx1^post27 == 0 /\ -x0^post27+x0^0 == 0 /\ oldx3^0-oldx3^post27 == 0 /\ -oldx2^post27+oldx2^0 == 0 /\ -x1^post27+x1^0 == 0 /\ oldx0^0-oldx0^post27 == 0), cost: 1 New rule: l12 -> l11 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx1^post27 = oldx1^0 propagated equality x0^post27 = x0^0 propagated equality oldx3^post27 = oldx3^0 propagated equality oldx2^post27 = oldx2^0 propagated equality x1^post27 = x1^0 propagated equality oldx0^post27 = oldx0^0 Simplified Guard Original rule: l12 -> l11 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l11 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l11 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l11 : T, cost: 1 Propagated Equalities Original rule: l12 -> l1 : oldx0^0'=oldx0^post28, oldx1^0'=oldx1^post28, oldx2^0'=oldx2^post28, oldx3^0'=oldx3^post28, x0^0'=x0^post28, x1^0'=x1^post28, (-x1^post28+x1^0 == 0 /\ -oldx1^post28+oldx1^0 == 0 /\ -oldx2^post28+oldx2^0 == 0 /\ x0^0-x0^post28 == 0 /\ -oldx0^post28+oldx0^0 == 0 /\ oldx3^0-oldx3^post28 == 0), cost: 1 New rule: l12 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality x1^post28 = x1^0 propagated equality oldx1^post28 = oldx1^0 propagated equality oldx2^post28 = oldx2^0 propagated equality x0^post28 = x0^0 propagated equality oldx0^post28 = oldx0^0 propagated equality oldx3^post28 = oldx3^0 Simplified Guard Original rule: l12 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l1 : T, cost: 1 Propagated Equalities Original rule: l12 -> l2 : oldx0^0'=oldx0^post29, oldx1^0'=oldx1^post29, oldx2^0'=oldx2^post29, oldx3^0'=oldx3^post29, x0^0'=x0^post29, x1^0'=x1^post29, (-x0^post29+x0^0 == 0 /\ -x1^post29+x1^0 == 0 /\ -oldx2^post29+oldx2^0 == 0 /\ -oldx0^post29+oldx0^0 == 0 /\ oldx3^0-oldx3^post29 == 0 /\ oldx1^0-oldx1^post29 == 0), cost: 1 New rule: l12 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality x0^post29 = x0^0 propagated equality x1^post29 = x1^0 propagated equality oldx2^post29 = oldx2^0 propagated equality oldx0^post29 = oldx0^0 propagated equality oldx3^post29 = oldx3^0 propagated equality oldx1^post29 = oldx1^0 Simplified Guard Original rule: l12 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l2 : T, cost: 1 Propagated Equalities Original rule: l12 -> l7 : oldx0^0'=oldx0^post30, oldx1^0'=oldx1^post30, oldx2^0'=oldx2^post30, oldx3^0'=oldx3^post30, x0^0'=x0^post30, x1^0'=x1^post30, (-x1^post30+x1^0 == 0 /\ -oldx0^post30+oldx0^0 == 0 /\ oldx3^0-oldx3^post30 == 0 /\ -oldx2^post30+oldx2^0 == 0 /\ oldx1^0-oldx1^post30 == 0 /\ -x0^post30+x0^0 == 0), cost: 1 New rule: l12 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality x1^post30 = x1^0 propagated equality oldx0^post30 = oldx0^0 propagated equality oldx3^post30 = oldx3^0 propagated equality oldx2^post30 = oldx2^0 propagated equality oldx1^post30 = oldx1^0 propagated equality x0^post30 = x0^0 Simplified Guard Original rule: l12 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l12 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l12 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l12 -> l7 : T, cost: 1 Propagated Equalities Original rule: l13 -> l12 : oldx0^0'=oldx0^post31, oldx1^0'=oldx1^post31, oldx2^0'=oldx2^post31, oldx3^0'=oldx3^post31, x0^0'=x0^post31, x1^0'=x1^post31, (-oldx2^post31+oldx2^0 == 0 /\ -oldx0^post31+oldx0^0 == 0 /\ -x0^post31+x0^0 == 0 /\ oldx1^0-oldx1^post31 == 0 /\ oldx3^0-oldx3^post31 == 0 /\ -x1^post31+x1^0 == 0), cost: 1 New rule: l13 -> l12 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx2^post31 = oldx2^0 propagated equality oldx0^post31 = oldx0^0 propagated equality x0^post31 = x0^0 propagated equality oldx1^post31 = oldx1^0 propagated equality oldx3^post31 = oldx3^0 propagated equality x1^post31 = x1^0 Simplified Guard Original rule: l13 -> l12 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l13 -> l12 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l13 -> l12 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l13 -> l12 : T, cost: 1 Step with 61 Trace 61[T] Blocked [{}, {}] Step with 49 Trace 61[T], 49[T] Blocked [{}, {}, {}] Step with 31 Trace 61[T], 49[T], 31[(x1^0 <= 0)] Blocked [{}, {}, {}, {}] Step with 45 Trace 61[T], 49[T], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {}, {}, {}, {}] Backtrack Trace 61[T], 49[T], 31[(x1^0 <= 0)] Blocked [{}, {}, {}, {45[T]}] Backtrack Trace 61[T], 49[T] Blocked [{}, {}, {31[T]}] Step with 32 Trace 61[T], 49[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {}, {31[T]}, {}] Step with 45 Trace 61[T], 49[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {}, {31[T]}, {}, {}] Backtrack Trace 61[T], 49[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {}, {31[T]}, {45[T]}] Backtrack Trace 61[T], 49[T] Blocked [{}, {}, {31[T], 32[T]}] Step with 33 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T]}, {}] Step with 46 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {}, {31[T], 32[T]}, {}, {}] Backtrack Trace 61[T], 49[T], 33[(1-x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T]}, {46[T]}] Step with 47 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {}, {31[T], 32[T]}, {46[T]}, {}] Step with 35 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T], 35[T] Blocked [{}, {}, {31[T], 32[T]}, {46[T]}, {}, {}] Accelerate Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 62: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Loop Acceleration Original rule: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0, x1^0'=-1+x1^0, 1-x1^0 <= 0, cost: 1 New rule: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 -1+x1^0 >= 0 [0]: montonic decrease yields x1^0-n >= 0 -1+x1^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+x1^0 >= 0) Replacement map: {-1+x1^0 >= 0 -> x1^0-n >= 0} Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {}, {31[T], 32[T]}, {62[T]}] Step with 31 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T]}, {62[T]}, {}] Step with 45 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {}, {31[T], 32[T]}, {62[T]}, {}, {}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T]}, {62[T]}, {45[T]}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 62[T]}] Step with 32 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 62[T]}, {}] Step with 45 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 32[T], 62[T]}] Step with 33 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 32[T], 62[T]}, {}] Step with 47 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 32[T], 62[T]}, {}, {}] Step with 35 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T], 35[T] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 32[T], 62[T]}, {}, {}, {}] Covered Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 32[T], 62[T]}, {}, {35[T]}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 32[T], 62[T]}, {47[T]}] Step with 46 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 32[T], 62[T]}, {47[T]}, {}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 32[T], 62[T]}, {46[T], 47[T]}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {}, {31[T], 32[T]}, {31[T], 32[T], 33[T], 62[T]}] Backtrack Trace 61[T], 49[T] Blocked [{}, {}, {31[T], 32[T], 62[T]}] Step with 33 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T], 62[T]}, {}] Step with 46 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {}, {31[T], 32[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 49[T], 33[(1-x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T], 62[T]}, {46[T]}] Step with 47 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {}, {31[T], 32[T], 62[T]}, {46[T]}, {}] Step with 35 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T], 35[T] Blocked [{}, {}, {31[T], 32[T], 62[T]}, {46[T]}, {}, {}] Covered Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {}, {31[T], 32[T], 62[T]}, {46[T]}, {35[T]}] Backtrack Trace 61[T], 49[T], 33[(1-x1^0 <= 0)] Blocked [{}, {}, {31[T], 32[T], 62[T]}, {46[T], 47[T]}] Backtrack Trace 61[T], 49[T] Blocked [{}, {}, {31[T], 32[T], 33[T], 62[T]}] Backtrack Trace 61[T] Blocked [{}, {49[T]}] Step with 50 Trace 61[T], 50[T] Blocked [{}, {49[T]}, {}] Step with 35 Trace 61[T], 50[T], 35[T] Blocked [{}, {49[T]}, {}, {}] Step with 33 Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {}, {}] Step with 47 Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {49[T]}, {}, {}, {}, {}] Accelerate Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 62: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 63: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=1-n2+x1^0, x1^0'=-n2+x1^0, (-n2+x1^0 >= 0 /\ -1+n2 >= 0), cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Loop Acceleration Original rule: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, 1-x1^0 <= 0, cost: 1 New rule: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=1-n2+x1^0, x1^0'=-n2+x1^0, (-n2+x1^0 >= 0 /\ -1+n2 >= 0), cost: 1 -1+x1^0 >= 0 [0]: montonic decrease yields -n2+x1^0 >= 0 -1+x1^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+x1^0 >= 0) Replacement map: {-1+x1^0 >= 0 -> -n2+x1^0 >= 0} Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {49[T]}, {}, {63[T]}] Step with 35 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T]}, {}, {63[T]}, {}] Step with 33 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {}, {}] Step with 47 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {49[T]}, {}, {63[T]}, {}, {}, {}] Covered Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {}, {47[T]}] Step with 46 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {49[T]}, {}, {63[T]}, {}, {47[T]}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {}, {46[T], 47[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T]}] Step with 62 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {62[T]}] Step with 31 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {62[T]}, {}] Step with 45 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {31[T], 62[T]}] Step with 32 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {31[T], 62[T]}, {}] Step with 45 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {31[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {31[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {31[T], 32[T], 62[T]}] Step with 33 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {31[T], 32[T], 62[T]}, {}] Step with 46 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {31[T], 32[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {31[T], 32[T], 62[T]}, {46[T]}] Step with 47 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {31[T], 32[T], 62[T]}, {46[T]}, {}] Covered Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {31[T], 32[T], 62[T]}, {46[T], 47[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T]}, {31[T], 32[T], 33[T], 62[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T], 62[T]}] Step with 31 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T], 62[T]}, {}] Step with 45 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {33[T], 34[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T]}, {}, {63[T]}, {31[T], 33[T], 34[T], 62[T]}] Step with 32 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {31[T], 33[T], 34[T], 62[T]}, {}] Step with 45 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T]}, {}, {63[T]}, {31[T], 33[T], 34[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T]}, {}, {63[T]}, {31[T], 33[T], 34[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T]}, {}, {63[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {49[T]}, {}, {35[T], 63[T]}] Backtrack Trace 61[T], 50[T] Blocked [{}, {49[T]}, {63[T]}] Step with 35 Trace 61[T], 50[T], 35[T] Blocked [{}, {49[T]}, {63[T]}, {}] Step with 32 Trace 61[T], 50[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {}, {}] Step with 45 Trace 61[T], 50[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T]}, {63[T]}, {}, {}, {}] Backtrack Trace 61[T], 50[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {}, {45[T]}] Backtrack Trace 61[T], 50[T], 35[T] Blocked [{}, {49[T]}, {63[T]}, {32[T]}] Step with 33 Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T]}, {}] Step with 47 Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {49[T]}, {63[T]}, {32[T]}, {}, {}] Covered Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T]}, {47[T]}] Step with 46 Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {49[T]}, {63[T]}, {32[T]}, {47[T]}, {}] Backtrack Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T]}, {46[T], 47[T]}] Backtrack Trace 61[T], 50[T], 35[T] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T]}] Step with 62 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {62[T]}] Step with 31 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {62[T]}, {}] Step with 45 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}] Step with 32 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}] Step with 45 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 62[T]}] Step with 33 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 62[T]}, {}] Step with 46 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 62[T]}, {46[T]}] Step with 47 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 62[T]}, {46[T]}, {}] Covered Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 62[T]}, {46[T], 47[T]}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 33[T], 62[T]}] Backtrack Trace 61[T], 50[T], 35[T] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T], 62[T]}] Step with 31 Trace 61[T], 50[T], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T], 62[T]}, {}] Step with 45 Trace 61[T], 50[T], 35[T], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T]}, {63[T]}, {32[T], 33[T], 34[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 35[T] Blocked [{}, {49[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 50[T] Blocked [{}, {49[T]}, {35[T], 63[T]}] Backtrack Trace 61[T] Blocked [{}, {49[T], 50[T]}] Step with 51 Trace 61[T], 51[T] Blocked [{}, {49[T], 50[T]}, {}] Step with 36 Trace 61[T], 51[T], 36[T] Blocked [{}, {49[T], 50[T]}, {}, {}] Backtrack Trace 61[T], 51[T] Blocked [{}, {49[T], 50[T]}, {36[T]}] Backtrack Trace 61[T] Blocked [{}, {49[T], 50[T], 51[T]}] Step with 52 Trace 61[T], 52[T] Blocked [{}, {49[T], 50[T], 51[T]}, {}] Step with 37 Trace 61[T], 52[T], 37[T] Blocked [{}, {49[T], 50[T], 51[T]}, {}, {}] Backtrack Trace 61[T], 52[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}] Step with 38 Trace 61[T], 52[T], 38[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {}] Step with 48 Trace 61[T], 52[T], 38[T], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {}, {}] Step with 43 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {}, {}, {}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {}, {}, {}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {}, {}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {}, {}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {}, {}, {39[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {}, {}, {39[T]}, {}] Accelerate Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 62: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 63: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=1-n2+x1^0, x1^0'=-n2+x1^0, (-n2+x1^0 >= 0 /\ -1+n2 >= 0), cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 64: l6 -> l6 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, x0^0'=-n5+x0^0, (-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0), cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Loop Acceleration Original rule: l6 -> l6 : oldx0^0'=-1+x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, (2-x0^0 <= 0 /\ x1^0 <= 0), cost: 1 New rule: l6 -> l6 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, x0^0'=-n5+x0^0, (-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0), cost: 1 -2+x0^0 >= 0 [0]: montonic decrease yields -1-n5+x0^0 >= 0 -2+x0^0 >= 0 [1]: eventual increase yields (-2+x0^0 >= 0 /\ 1 <= 0) -x1^0 >= 0 [0]: monotonic increase yields -x1^0 >= 0 Replacement map: {-2+x0^0 >= 0 -> -1-n5+x0^0 >= 0, -x1^0 >= 0 -> -x1^0 >= 0} Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {64[T]}] Step with 37 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {64[T]}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}, {}, {}] Step with 43 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}, {}, {}, {}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}, {}, {}, {}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}, {}, {}, {40[T]}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}, {}, {}, {40[T]}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}, {}, {}, {40[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}, {}, {}, {40[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}, {}, {}, {39[T], 40[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}, {}, {43[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 64[T]}, {48[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 52[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 52[T], 38[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 52[T], 38[T], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {}] Step with 43 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {}, {}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {}, {}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {}, {39[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {}, {39[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {}, {39[T], 40[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {43[T]}] Step with 44 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {43[T]}, {}] Step with 41 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {43[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {43[T]}, {41[T]}] Step with 42 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {43[T]}, {41[T]}, {}] Accelerate Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 62: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 63: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=1-n2+x1^0, x1^0'=-n2+x1^0, (-n2+x1^0 >= 0 /\ -1+n2 >= 0), cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 64: l6 -> l6 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, x0^0'=-n5+x0^0, (-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0), cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 65: l7 -> l7 : oldx0^0'=x0^0, oldx1^0'=1-n6+x1^0, x1^0'=-n6+x1^0, (-1+n6 >= 0 /\ -n6+x1^0 >= 0), cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Loop Acceleration Original rule: l7 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, 1-x1^0 <= 0, cost: 1 New rule: l7 -> l7 : oldx0^0'=x0^0, oldx1^0'=1-n6+x1^0, x1^0'=-n6+x1^0, (-1+n6 >= 0 /\ -n6+x1^0 >= 0), cost: 1 -1+x1^0 >= 0 [0]: montonic decrease yields -n6+x1^0 >= 0 -1+x1^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+x1^0 >= 0) Replacement map: {-1+x1^0 >= 0 -> -n6+x1^0 >= 0} Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}] Step with 48 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {}] Step with 44 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {}, {}] Step with 42 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {}, {}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {}, {42[T]}] Step with 41 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {}, {42[T]}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {}, {41[T], 42[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {44[T]}] Step with 43 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {44[T]}, {}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {44[T]}, {}, {}] Acceleration Failed marked recursive suffix as redundant Step with 38 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {44[T]}, {}, {}, {}] Accelerate Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 62: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 63: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=1-n2+x1^0, x1^0'=-n2+x1^0, (-n2+x1^0 >= 0 /\ -1+n2 >= 0), cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 64: l6 -> l6 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, x0^0'=-n5+x0^0, (-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0), cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 65: l7 -> l7 : oldx0^0'=x0^0, oldx1^0'=1-n6+x1^0, x1^0'=-n6+x1^0, (-1+n6 >= 0 /\ -n6+x1^0 >= 0), cost: 1 66: l7 -> l7 : oldx0^0'=1-n7+x0^0, oldx1^0'=x1^0, x0^0'=-n7+x0^0, (-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0), cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Loop Acceleration Original rule: l7 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, (x1^0 <= 0 /\ 1-x0^0 <= 0), cost: 1 New rule: l7 -> l7 : oldx0^0'=1-n7+x0^0, oldx1^0'=x1^0, x0^0'=-n7+x0^0, (-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0), cost: 1 -x1^0 >= 0 [0]: monotonic increase yields -x1^0 >= 0 -1+x0^0 >= 0 [0]: montonic decrease yields -n7+x0^0 >= 0 -1+x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+x0^0 >= 0) Replacement map: {-x1^0 >= 0 -> -x1^0 >= 0, -1+x0^0 >= 0 -> -n7+x0^0 >= 0} Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}] Acceleration Failed marked recursive suffix as redundant Step with 48 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {}, {}] Acceleration Failed marked recursive suffix as redundant Step with 38 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {}, {}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {}, {38[T]}] Step with 64 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {}, {38[T]}, {64[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {}, {38[T], 64[T]}] Step with 37 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {40[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {40[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {40[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {40[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {}, {39[T], 40[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {66[T]}, {43[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}] Step with 48 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}] Step with 43 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {39[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {39[T]}, {}] Step with 37 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {39[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}, {64[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {}, {39[T], 40[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {43[T]}] Step with 44 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {43[T]}, {}] Step with 41 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {43[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {43[T]}, {41[T]}] Step with 42 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {43[T]}, {41[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {43[T]}, {41[T], 42[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {65[T], 66[T]}, {43[T], 44[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 52[T], 38[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}] Step with 48 Trace 61[T], 52[T], 38[T], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {}] Step with 44 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {}, {}] Step with 42 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {}, {}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {}, {42[T]}] Step with 41 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {}, {42[T]}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {}, {41[T], 42[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {44[T]}] Step with 43 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {44[T]}, {}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {44[T]}, {}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {44[T]}, {40[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {44[T]}, {40[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {44[T]}, {40[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {44[T]}, {40[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {44[T]}, {39[T], 40[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {65[T]}, {43[T], 44[T]}] Backtrack Trace 61[T], 52[T], 38[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}] Step with 66 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}] Step with 39 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {39[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {39[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {39[T], 40[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 52[T], 38[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 52[T] Blocked [{}, {49[T], 50[T], 51[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T] Blocked [{}, {49[T], 50[T], 51[T], 52[T]}] Step with 53 Trace 61[T], 53[T] Blocked [{}, {49[T], 50[T], 51[T], 52[T]}, {}] Backtrack Trace 61[T] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}] Step with 54 Trace 61[T], 54[T] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}] Step with 40 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {}] Step with 64 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {}, {64[T]}] Step with 37 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {}, {64[T]}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {}, {37[T], 64[T]}] Step with 38 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {}, {37[T], 64[T]}, {}, {}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {}, {37[T], 64[T]}, {}, {}, {}] Accelerate Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 62: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 63: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=1-n2+x1^0, x1^0'=-n2+x1^0, (-n2+x1^0 >= 0 /\ -1+n2 >= 0), cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 64: l6 -> l6 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, x0^0'=-n5+x0^0, (-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0), cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 65: l7 -> l7 : oldx0^0'=x0^0, oldx1^0'=1-n6+x1^0, x1^0'=-n6+x1^0, (-1+n6 >= 0 /\ -n6+x1^0 >= 0), cost: 1 66: l7 -> l7 : oldx0^0'=1-n7+x0^0, oldx1^0'=x1^0, x0^0'=-n7+x0^0, (-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0), cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 67: l8 -> l8 : oldx0^0'=-n8-(-1+n8)*n54-n54+x0^0, oldx1^0'=x1^0, x0^0'=-n8+x0^0-n8*n54, (-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0), cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Loop Acceleration Original rule: l8 -> l8 : oldx0^0'=-1-n54+x0^0, oldx1^0'=x1^0, x0^0'=-1-n54+x0^0, (-x1^0 >= 0 /\ x1^0 <= 0 /\ -1-n54+x0^0 >= 0 /\ -1+n54 >= 0 /\ 1-x0^0 <= 0), cost: 1 New rule: l8 -> l8 : oldx0^0'=-n8-(-1+n8)*n54-n54+x0^0, oldx1^0'=x1^0, x0^0'=-n8+x0^0-n8*n54, (-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0), cost: 1 -x1^0 >= 0 [0]: monotonic increase yields -x1^0 >= 0 -1-n54+x0^0 >= 0 [0]: montonic decrease yields -n8-(-1+n8)*n54-n54+x0^0 >= 0, dependencies: -1+n54 >= 0 -1-n54+x0^0 >= 0 [1]: eventual decrease yields (-n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -1-n54+x0^0 >= 0) -1-n54+x0^0 >= 0 [2]: eventual increase yields (1+n54 <= 0 /\ -1-n54+x0^0 >= 0) -1+n54 >= 0 [0]: monotonic increase yields -1+n54 >= 0 -1+x0^0 >= 0 [0]: montonic decrease yields -n8-(-1+n8)*n54+x0^0 >= 0, dependencies: -1+n54 >= 0 -1+x0^0 >= 0 [1]: eventual increase yields (1+n54 <= 0 /\ -1+x0^0 >= 0) Replacement map: {-x1^0 >= 0 -> -x1^0 >= 0, -1-n54+x0^0 >= 0 -> -n8-(-1+n8)*n54-n54+x0^0 >= 0, -1+n54 >= 0 -> -1+n54 >= 0, -1+x0^0 >= 0 -> -n8-(-1+n8)*n54+x0^0 >= 0} Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {67[T]}] Step with 39 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {67[T]}, {}] Step with 36 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {67[T]}, {}, {}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {39[T], 67[T]}] Step with 40 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {39[T], 67[T]}, {}, {}] Step with 48 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {39[T], 67[T]}, {}, {}, {}] Step with 43 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {39[T], 67[T]}, {}, {}, {}, {}] Accelerate Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 62: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 63: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=1-n2+x1^0, x1^0'=-n2+x1^0, (-n2+x1^0 >= 0 /\ -1+n2 >= 0), cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 64: l6 -> l6 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, x0^0'=-n5+x0^0, (-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0), cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 65: l7 -> l7 : oldx0^0'=x0^0, oldx1^0'=1-n6+x1^0, x1^0'=-n6+x1^0, (-1+n6 >= 0 /\ -n6+x1^0 >= 0), cost: 1 66: l7 -> l7 : oldx0^0'=1-n7+x0^0, oldx1^0'=x1^0, x0^0'=-n7+x0^0, (-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0), cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 67: l8 -> l8 : oldx0^0'=-n8-(-1+n8)*n54-n54+x0^0, oldx1^0'=x1^0, x0^0'=-n8+x0^0-n8*n54, (-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0), cost: 1 68: l8 -> l8 : oldx0^0'=-n9+x0^0, oldx1^0'=x1^0, x0^0'=-n9+x0^0, (-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0), cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Loop Acceleration Original rule: l8 -> l8 : oldx0^0'=-1+x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, (x1^0 <= 0 /\ 1-x0^0 <= 0), cost: 1 New rule: l8 -> l8 : oldx0^0'=-n9+x0^0, oldx1^0'=x1^0, x0^0'=-n9+x0^0, (-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0), cost: 1 -x1^0 >= 0 [0]: monotonic increase yields -x1^0 >= 0 -1+x0^0 >= 0 [0]: montonic decrease yields -n9+x0^0 >= 0 -1+x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+x0^0 >= 0) Replacement map: {-x1^0 >= 0 -> -x1^0 >= 0, -1+x0^0 >= 0 -> -n9+x0^0 >= 0} Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T]}, {}, {39[T], 67[T]}, {68[T]}] Restart Step with 61 Trace 61[T] Blocked [{}, {}] Step with 55 Trace 61[T], 55[T] Blocked [{}, {}, {}] Step with 41 Trace 61[T], 55[T], 41[T] Blocked [{}, {}, {}, {}] Backtrack Trace 61[T], 55[T] Blocked [{}, {}, {41[T]}] Step with 42 Trace 61[T], 55[T], 42[T] Blocked [{}, {}, {41[T]}, {}] Step with 48 Trace 61[T], 55[T], 42[T], 48[T] Blocked [{}, {}, {41[T]}, {}, {}] Step with 44 Trace 61[T], 55[T], 42[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {}, {}, {}] Accelerate Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 62: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 63: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=1-n2+x1^0, x1^0'=-n2+x1^0, (-n2+x1^0 >= 0 /\ -1+n2 >= 0), cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 64: l6 -> l6 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, x0^0'=-n5+x0^0, (-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0), cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 65: l7 -> l7 : oldx0^0'=x0^0, oldx1^0'=1-n6+x1^0, x1^0'=-n6+x1^0, (-1+n6 >= 0 /\ -n6+x1^0 >= 0), cost: 1 66: l7 -> l7 : oldx0^0'=1-n7+x0^0, oldx1^0'=x1^0, x0^0'=-n7+x0^0, (-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0), cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 67: l8 -> l8 : oldx0^0'=-n8-(-1+n8)*n54-n54+x0^0, oldx1^0'=x1^0, x0^0'=-n8+x0^0-n8*n54, (-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0), cost: 1 68: l8 -> l8 : oldx0^0'=-n9+x0^0, oldx1^0'=x1^0, x0^0'=-n9+x0^0, (-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0), cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 69: l9 -> l9 : oldx0^0'=x0^0, oldx1^0'=-n10+x1^0, x1^0'=-n10+x1^0, (-1+n10 >= 0 /\ -1-n10+x1^0 >= 0), cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Loop Acceleration Original rule: l9 -> l9 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0, x1^0'=-1+x1^0, 2-x1^0 <= 0, cost: 1 New rule: l9 -> l9 : oldx0^0'=x0^0, oldx1^0'=-n10+x1^0, x1^0'=-n10+x1^0, (-1+n10 >= 0 /\ -1-n10+x1^0 >= 0), cost: 1 -2+x1^0 >= 0 [0]: montonic decrease yields -1-n10+x1^0 >= 0 -2+x1^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -2+x1^0 >= 0) Replacement map: {-2+x1^0 >= 0 -> -1-n10+x1^0 >= 0} Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {}, {41[T]}, {69[T]}] Step with 41 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {}, {41[T]}, {69[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}] Step with 48 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {}] Step with 44 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}] Step with 43 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}, {}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {44[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {}, {43[T], 44[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}] Step with 65 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}] Step with 66 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}] Step with 48 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}] Step with 68 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {68[T]}] Step with 67 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}, {}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}] Step with 67 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}] Step with 48 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}] Step with 43 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}] Step with 68 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}] Step with 44 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 44[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}] Step with 66 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}] Step with 68 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {}, {41[T]}, {41[T], 69[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 55[T], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {}, {41[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 55[T] Blocked [{}, {}, {41[T], 69[T]}] Step with 42 Trace 61[T], 55[T], 42[T] Blocked [{}, {}, {41[T], 69[T]}, {}] Step with 48 Trace 61[T], 55[T], 42[T], 48[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}] Step with 43 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {}] Step with 39 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}, {}] Step with 37 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}] Step with 68 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 48[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {43[T]}] Step with 44 Trace 61[T], 55[T], 42[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {}, {43[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 48[T] Blocked [{}, {}, {41[T], 69[T]}, {}, {43[T], 44[T]}] Backtrack Trace 61[T], 55[T], 42[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}] Step with 65 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}] Step with 66 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}] Step with 48 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}] Step with 68 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}] Step with 48 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}] Step with 43 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {}] Step with 39 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}] Step with 68 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}] Step with 44 Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 44[T]}] Backtrack Trace 61[T], 55[T], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 55[T], 42[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}] Step with 66 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}] Step with 68 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {}] Step with 37 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Covered Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}] Backtrack Trace 61[T], 55[T], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 55[T], 42[T] Blocked [{}, {}, {41[T], 69[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 55[T] Blocked [{}, {}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T] Blocked [{}, {55[T]}] Step with 58 Trace 61[T], 58[T] Blocked [{}, {55[T]}, {}] Step with 45 Trace 61[T], 58[T], 45[T] Blocked [{}, {55[T]}, {}, {}] Backtrack Trace 61[T], 58[T] Blocked [{}, {55[T]}, {45[T]}] Backtrack Trace 61[T] Blocked [{}, {55[T], 58[T]}] Step with 56 Trace 61[T], 56[T] Blocked [{}, {55[T], 58[T]}, {}] Step with 43 Trace 61[T], 56[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {}] Step with 39 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {}, {}] Step with 36 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {}, {}, {}, {}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {}, {36[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {39[T]}] Step with 40 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {39[T]}, {}] Step with 37 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {}, {39[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {39[T]}, {37[T]}, {}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {39[T]}, {37[T]}, {}, {}] Accelerate Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 62: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 63: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=1-n2+x1^0, x1^0'=-n2+x1^0, (-n2+x1^0 >= 0 /\ -1+n2 >= 0), cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 64: l6 -> l6 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, x0^0'=-n5+x0^0, (-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0), cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 65: l7 -> l7 : oldx0^0'=x0^0, oldx1^0'=1-n6+x1^0, x1^0'=-n6+x1^0, (-1+n6 >= 0 /\ -n6+x1^0 >= 0), cost: 1 66: l7 -> l7 : oldx0^0'=1-n7+x0^0, oldx1^0'=x1^0, x0^0'=-n7+x0^0, (-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0), cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 67: l8 -> l8 : oldx0^0'=-n8-(-1+n8)*n54-n54+x0^0, oldx1^0'=x1^0, x0^0'=-n8+x0^0-n8*n54, (-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0), cost: 1 68: l8 -> l8 : oldx0^0'=-n9+x0^0, oldx1^0'=x1^0, x0^0'=-n9+x0^0, (-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0), cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 69: l9 -> l9 : oldx0^0'=x0^0, oldx1^0'=-n10+x1^0, x1^0'=-n10+x1^0, (-1+n10 >= 0 /\ -1-n10+x1^0 >= 0), cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 70: l10 -> l10 : oldx0^0'=-n11+x0^0, oldx1^0'=x1^0, x0^0'=-n11+x0^0, (-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0), cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Loop Acceleration Original rule: l10 -> l10 : oldx0^0'=-1+x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, (x1^0 <= 0 /\ 1-x0^0 <= 0), cost: 1 New rule: l10 -> l10 : oldx0^0'=-n11+x0^0, oldx1^0'=x1^0, x0^0'=-n11+x0^0, (-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0), cost: 1 -x1^0 >= 0 [0]: monotonic increase yields -x1^0 >= 0 -1+x0^0 >= 0 [0]: montonic decrease yields -n11+x0^0 >= 0 -1+x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+x0^0 >= 0) Replacement map: {-x1^0 >= 0 -> -x1^0 >= 0, -1+x0^0 >= 0 -> -n11+x0^0 >= 0} Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {70[T]}] Step with 43 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}] Step with 40 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {}] Step with 38 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {}, {}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {}, {}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {}, {48[T]}] Step with 66 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}] Step with 64 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T], 64[T]}] Step with 37 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}] Step with 68 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {68[T]}] Step with 67 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 37 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T]}] Step with 38 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T]}, {}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T]}, {}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T]}] Step with 66 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {}, {44[T], 70[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {}, {43[T], 44[T], 70[T]}] Backtrack Trace 61[T], 56[T] Blocked [{}, {55[T], 58[T]}, {70[T]}] Step with 43 Trace 61[T], 56[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {}] Step with 39 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {}, {}] Step with 36 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {}, {}, {}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {}, {36[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}] Step with 40 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {}] Step with 37 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T]}, {}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T]}, {}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {48[T]}] Step with 66 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 56[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {70[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}] Step with 44 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {}] Step with 42 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {}, {}] Step with 48 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {}, {}, {}] Accelerate Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 62: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 63: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=1-n2+x1^0, x1^0'=-n2+x1^0, (-n2+x1^0 >= 0 /\ -1+n2 >= 0), cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 64: l6 -> l6 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, x0^0'=-n5+x0^0, (-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0), cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 65: l7 -> l7 : oldx0^0'=x0^0, oldx1^0'=1-n6+x1^0, x1^0'=-n6+x1^0, (-1+n6 >= 0 /\ -n6+x1^0 >= 0), cost: 1 66: l7 -> l7 : oldx0^0'=1-n7+x0^0, oldx1^0'=x1^0, x0^0'=-n7+x0^0, (-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0), cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 67: l8 -> l8 : oldx0^0'=-n8-(-1+n8)*n54-n54+x0^0, oldx1^0'=x1^0, x0^0'=-n8+x0^0-n8*n54, (-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0), cost: 1 68: l8 -> l8 : oldx0^0'=-n9+x0^0, oldx1^0'=x1^0, x0^0'=-n9+x0^0, (-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0), cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 69: l9 -> l9 : oldx0^0'=x0^0, oldx1^0'=-n10+x1^0, x1^0'=-n10+x1^0, (-1+n10 >= 0 /\ -1-n10+x1^0 >= 0), cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 70: l10 -> l10 : oldx0^0'=-n11+x0^0, oldx1^0'=x1^0, x0^0'=-n11+x0^0, (-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0), cost: 1 71: l10 -> l10 : oldx0^0'=x0^0, oldx1^0'=-n12+x1^0, x1^0'=-n12+x1^0, (-n12+x1^0 >= 0 /\ -1+n12 >= 0), cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Loop Acceleration Original rule: l10 -> l10 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0, x1^0'=-1+x1^0, 1-x1^0 <= 0, cost: 1 New rule: l10 -> l10 : oldx0^0'=x0^0, oldx1^0'=-n12+x1^0, x1^0'=-n12+x1^0, (-n12+x1^0 >= 0 /\ -1+n12 >= 0), cost: 1 -1+x1^0 >= 0 [0]: montonic decrease yields -n12+x1^0 >= 0 -1+x1^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+x1^0 >= 0) Replacement map: {-1+x1^0 >= 0 -> -n12+x1^0 >= 0} Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}] Step with 44 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}] Step with 42 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T]}] Step with 65 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T]}, {65[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T]}, {65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T]}, {65[T]}, {66[T]}, {}] Acceleration Failed marked recursive suffix as redundant Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T]}, {65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T]}, {65[T], 66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T]}, {65[T], 66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T], 65[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T], 65[T]}, {66[T]}, {}] Acceleration Failed marked recursive suffix as redundant Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}] Step with 69 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}] Step with 41 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T]}] Step with 65 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T], 65[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}] Step with 41 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}] Step with 43 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}] Step with 68 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}] Step with 40 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}] Step with 70 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {70[T]}] Acceleration Failed marked recursive suffix as redundant Step with 43 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 56[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 56[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}] Step with 44 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {}] Step with 41 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}] Step with 42 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {}] Step with 48 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}] Step with 65 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}] Step with 66 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}] Step with 68 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}] Step with 40 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}] Step with 70 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {70[T]}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T], 70[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T], 66[T]}] Step with 48 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {65[T], 66[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}] Step with 66 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {}] Step with 70 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {}, {70[T]}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {70[T]}] Step with 43 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}] Step with 69 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}] Step with 41 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {}] Step with 48 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T]}] Step with 65 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}] Step with 66 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T]}, {65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}] Step with 48 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T]}, {65[T], 66[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T], 65[T]}] Step with 66 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {66[T]}, {}] Covered Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 56[T], 44[(1-x1^0 <= 0)] Blocked [{}, {55[T], 58[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 56[T] Blocked [{}, {55[T], 58[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T] Blocked [{}, {55[T], 56[T], 58[T]}] Step with 49 Trace 61[T], 49[T] Blocked [{}, {55[T], 56[T], 58[T]}, {}] Step with 31 Trace 61[T], 49[T], 31[(x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {}, {}] Step with 45 Trace 61[T], 49[T], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {55[T], 56[T], 58[T]}, {}, {}, {}] Backtrack Trace 61[T], 49[T], 31[(x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {}, {45[T]}] Backtrack Trace 61[T], 49[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T]}] Step with 32 Trace 61[T], 49[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T]}, {}] Step with 45 Trace 61[T], 49[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T]}, {}, {}] Backtrack Trace 61[T], 49[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T]}, {45[T]}] Backtrack Trace 61[T], 49[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T]}] Step with 33 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 34[T]}, {}] Step with 46 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 34[T]}, {}, {}] Backtrack Trace 61[T], 49[T], 33[(1-x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 34[T]}, {46[T]}] Step with 47 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 34[T]}, {46[T]}, {}] Step with 35 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T], 35[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 34[T]}, {46[T]}, {}, {}] Covered Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 34[T]}, {46[T]}, {35[T]}] Step with 63 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 34[T]}, {46[T]}, {35[T]}, {63[T]}] Step with 35 Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 34[T]}, {46[T]}, {35[T]}, {63[T]}, {}] Covered Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 34[T]}, {46[T]}, {35[T]}, {35[T], 63[T]}] Backtrack Trace 61[T], 49[T], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 34[T]}, {46[T]}, {35[T], 63[T]}] Backtrack Trace 61[T], 49[T], 33[(1-x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 34[T]}, {46[T], 47[T]}] Backtrack Trace 61[T], 49[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}] Step with 62 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}] Step with 31 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}, {}] Step with 45 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}, {}, {}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}, {45[T]}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}] Step with 32 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}] Step with 45 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 62[T]}] Step with 33 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}] Step with 47 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}, {}] Step with 35 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T], 35[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}, {}, {}] Covered Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}, {35[T]}] Step with 63 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}, {35[T]}, {63[T]}] Step with 35 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}, {35[T]}, {63[T]}, {}] Covered Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}, {35[T]}, {35[T], 63[T]}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}, {35[T], 63[T]}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {47[T]}] Step with 46 Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {47[T]}, {}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}] Backtrack Trace 61[T], 49[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 49[T] Blocked [{}, {55[T], 56[T], 58[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T] Blocked [{}, {49[T], 55[T], 56[T], 58[T]}] Step with 51 Trace 61[T], 51[T] Blocked [{}, {49[T], 55[T], 56[T], 58[T]}, {}] Step with 36 Trace 61[T], 51[T], 36[T] Blocked [{}, {49[T], 55[T], 56[T], 58[T]}, {}, {}] Backtrack Trace 61[T], 51[T] Blocked [{}, {49[T], 55[T], 56[T], 58[T]}, {36[T]}] Backtrack Trace 61[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}] Step with 60 Trace 61[T], 60[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}] Step with 48 Trace 61[T], 60[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}] Step with 43 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}] Step with 68 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {68[T]}] Step with 67 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}, {}] Step with 37 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Covered Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}] Step with 70 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Step with 37 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 60[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}] Step with 71 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}] Step with 44 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}, {}] Step with 42 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}, {}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}] Step with 69 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}] Step with 41 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}] Step with 41 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}] Step with 43 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}] Step with 68 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}] Step with 70 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {70[T]}] Step with 43 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 60[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 60[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}] Step with 44 Trace 61[T], 60[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}, {}] Step with 41 Trace 61[T], 60[T], 48[T], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}, {41[T]}] Step with 42 Trace 61[T], 60[T], 48[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}, {41[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}] Step with 69 Trace 61[T], 60[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}] Step with 41 Trace 61[T], 60[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 60[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 60[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 60[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 60[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 60[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 60[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}] Step with 65 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}] Step with 66 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}] Step with 48 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}] Step with 70 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {70[T]}] Step with 43 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T], 70[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}] Step with 48 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}] Step with 43 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}] Step with 70 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}] Step with 71 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}] Step with 44 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {}] Step with 42 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}] Step with 69 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}] Step with 41 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}] Step with 41 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}] Step with 43 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}] Step with 70 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {70[T]}] Step with 43 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}] Step with 44 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {}] Step with 41 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T]}] Step with 42 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}] Step with 69 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}] Step with 41 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 60[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 60[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}] Step with 66 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}] Step with 68 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}] Step with 40 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}] Step with 70 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {70[T]}] Step with 43 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T]}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T], 70[T]}] Backtrack Trace 61[T], 60[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 60[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T], 60[T]}] Step with 57 Trace 61[T], 57[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 58[T], 60[T]}, {}] Backtrack Trace 61[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}] Step with 59 Trace 61[T], 59[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {}] Step with 46 Trace 61[T], 59[T], 46[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {}, {}] Backtrack Trace 61[T], 59[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}] Step with 47 Trace 61[T], 59[T], 47[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {}] Step with 35 Trace 61[T], 59[T], 47[T], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {}, {}] Step with 33 Trace 61[T], 59[T], 47[T], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {}, {}, {}] Accelerate Start location: l13 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 31: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 32: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, (-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0), cost: 1 33: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 34: l0 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, (1-x1^0 <= 0 /\ 1+x1^0 <= 0), cost: 1 62: l0 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0-n, x1^0'=x1^0-n, (x1^0-n >= 0 /\ -1+n >= 0), cost: 1 45: l1 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post15, oldx3^0'=x1^post15, x0^0'=x0^post15, x1^0'=x1^post15, T, cost: 1 46: l2 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post16, oldx3^0'=x1^post16, x0^0'=x0^post16, x1^0'=x1^post16, T, cost: 1 47: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 72: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=-n14+x1^0, x1^0'=-n14+x1^0, (-1+n14 >= 0 /\ -1-n14+x1^0 >= 0), cost: 1 35: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 63: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=1-n2+x1^0, x1^0'=-n2+x1^0, (-n2+x1^0 >= 0 /\ -1+n2 >= 0), cost: 1 36: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post6, oldx3^0'=x1^post6, x0^0'=x0^post6, x1^0'=x1^post6, T, cost: 1 37: l6 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post7, oldx3^0'=x1^post7, x0^0'=x0^post7, x1^0'=x1^post7, T, cost: 1 38: l6 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0'=-1+x0^0, T, cost: 1 64: l6 -> l6 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, x0^0'=-n5+x0^0, (-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0), cost: 1 48: l7 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, T, cost: 1 65: l7 -> l7 : oldx0^0'=x0^0, oldx1^0'=1-n6+x1^0, x1^0'=-n6+x1^0, (-1+n6 >= 0 /\ -n6+x1^0 >= 0), cost: 1 66: l7 -> l7 : oldx0^0'=1-n7+x0^0, oldx1^0'=x1^0, x0^0'=-n7+x0^0, (-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0), cost: 1 39: l8 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, x0^0 <= 0, cost: 1 40: l8 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x0^0 <= 0, cost: 1 67: l8 -> l8 : oldx0^0'=-n8-(-1+n8)*n54-n54+x0^0, oldx1^0'=x1^0, x0^0'=-n8+x0^0-n8*n54, (-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0), cost: 1 68: l8 -> l8 : oldx0^0'=-n9+x0^0, oldx1^0'=x1^0, x0^0'=-n9+x0^0, (-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0), cost: 1 41: l9 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post11, oldx3^0'=x1^post11, x0^0'=x0^post11, x1^0'=x1^post11, T, cost: 1 42: l9 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=-1+x1^0, T, cost: 1 69: l9 -> l9 : oldx0^0'=x0^0, oldx1^0'=-n10+x1^0, x1^0'=-n10+x1^0, (-1+n10 >= 0 /\ -1-n10+x1^0 >= 0), cost: 1 43: l10 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0 <= 0, cost: 1 44: l10 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, 1-x1^0 <= 0, cost: 1 70: l10 -> l10 : oldx0^0'=-n11+x0^0, oldx1^0'=x1^0, x0^0'=-n11+x0^0, (-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0), cost: 1 71: l10 -> l10 : oldx0^0'=x0^0, oldx1^0'=-n12+x1^0, x1^0'=-n12+x1^0, (-n12+x1^0 >= 0 /\ -1+n12 >= 0), cost: 1 49: l12 -> l0 : T, cost: 1 50: l12 -> l3 : T, cost: 1 51: l12 -> l4 : T, cost: 1 52: l12 -> l6 : T, cost: 1 53: l12 -> l5 : T, cost: 1 54: l12 -> l8 : T, cost: 1 55: l12 -> l9 : T, cost: 1 56: l12 -> l10 : T, cost: 1 57: l12 -> l11 : T, cost: 1 58: l12 -> l1 : T, cost: 1 59: l12 -> l2 : T, cost: 1 60: l12 -> l7 : T, cost: 1 61: l13 -> l12 : T, cost: 1 Loop Acceleration Original rule: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0, x1^0'=-1+x1^0, 2-x1^0 <= 0, cost: 1 New rule: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=-n14+x1^0, x1^0'=-n14+x1^0, (-1+n14 >= 0 /\ -1-n14+x1^0 >= 0), cost: 1 -2+x1^0 >= 0 [0]: montonic decrease yields -1-n14+x1^0 >= 0 -2+x1^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -2+x1^0 >= 0) Replacement map: {-2+x1^0 >= 0 -> -1-n14+x1^0 >= 0} Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {72[T]}] Step with 46 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 46[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {72[T]}, {}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}] Step with 47 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}] Step with 35 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {}] Step with 33 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {}, {}] Covered Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}] Step with 62 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}, {62[T]}] Step with 31 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}, {62[T]}, {}] Step with 45 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}, {62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}, {62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}, {31[T], 62[T]}] Step with 32 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}, {31[T], 62[T]}, {}] Step with 45 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}, {31[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}, {31[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}, {31[T], 32[T], 62[T]}] Step with 33 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}, {31[T], 32[T], 34[T], 62[T]}, {}] Covered Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T], 62[T]}] Step with 31 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T], 62[T]}, {}] Step with 45 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {33[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {31[T], 33[T], 62[T]}] Step with 32 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {31[T], 33[T], 62[T]}, {}] Step with 45 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {31[T], 33[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {31[T], 33[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 62[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}] Step with 63 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}] Step with 35 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {}] Step with 32 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {}, {}] Step with 45 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {}, {}, {}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {}, {45[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T]}] Step with 33 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 34[T]}, {}] Covered Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}] Step with 62 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {62[T]}] Step with 31 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {62[T]}, {}] Step with 45 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}] Step with 32 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}] Step with 45 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 62[T]}] Step with 33 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}] Covered Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T], 62[T]}] Step with 31 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T], 62[T]}, {}] Step with 45 Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {32[T], 33[T], 34[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T]}, {35[T], 63[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 72[T]}, {35[T], 63[T]}] Backtrack Trace 61[T], 59[T], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T]}, {46[T], 47[T], 72[T]}] Backtrack Trace 61[T], 59[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}] Step with 47 Trace 61[T], 59[T], 47[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}] Step with 35 Trace 61[T], 59[T], 47[T], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {}] Step with 31 Trace 61[T], 59[T], 47[T], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {}, {}] Step with 45 Trace 61[T], 59[T], 47[T], 35[T], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {}, {}, {}] Backtrack Trace 61[T], 59[T], 47[T], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {}, {45[T]}] Backtrack Trace 61[T], 59[T], 47[T], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T]}] Step with 32 Trace 61[T], 59[T], 47[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T]}, {}] Step with 45 Trace 61[T], 59[T], 47[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 47[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 47[T], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T]}] Step with 33 Trace 61[T], 59[T], 47[T], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 34[T]}, {}] Covered Trace 61[T], 59[T], 47[T], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}] Step with 62 Trace 61[T], 59[T], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}] Step with 31 Trace 61[T], 59[T], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}, {}] Step with 45 Trace 61[T], 59[T], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}] Step with 32 Trace 61[T], 59[T], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}] Step with 45 Trace 61[T], 59[T], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 62[T]}] Step with 33 Trace 61[T], 59[T], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}] Covered Trace 61[T], 59[T], 47[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 59[T], 47[T], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 59[T], 47[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}] Step with 63 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}] Step with 35 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {}] Step with 33 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {}, {}] Covered Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}] Step with 62 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}, {62[T]}] Step with 31 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}, {62[T]}, {}] Step with 45 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}, {62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}, {62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}, {31[T], 62[T]}] Step with 32 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}, {31[T], 62[T]}, {}] Step with 45 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}, {31[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}, {31[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}, {31[T], 32[T], 62[T]}] Step with 33 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}, {31[T], 32[T], 34[T], 62[T]}, {}] Covered Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T], 62[T]}] Step with 31 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T], 62[T]}, {}] Step with 45 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {33[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {31[T], 33[T], 62[T]}] Step with 32 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {31[T], 33[T], 62[T]}, {}] Step with 45 Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {31[T], 33[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {31[T], 33[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 62[T]}] Backtrack Trace 61[T], 59[T], 47[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T]}, {35[T], 63[T]}] Backtrack Trace 61[T], 59[T], 47[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 72[T]}, {35[T], 63[T]}] Backtrack Trace 61[T], 59[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 60[T]}, {46[T], 47[T], 72[T]}] Backtrack Trace 61[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}] Step with 54 Trace 61[T], 54[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}] Step with 68 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}] Step with 38 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}] Step with 48 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}, {}] Step with 43 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}, {}, {}] Covered Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}, {43[T]}] Step with 70 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {}, {43[T], 70[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T]}] Step with 66 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}, {}, {}] Covered Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}, {43[T]}] Step with 70 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {66[T]}, {43[T], 70[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}] Step with 64 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}, {}] Step with 43 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}, {}, {}] Covered Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}, {43[T]}] Step with 70 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {}, {43[T], 70[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}] Covered Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}] Step with 70 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 70[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 67[T], 68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 54[T], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 54[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}] Step with 40 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {}] Step with 37 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}] Step with 48 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T]}] Step with 70 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}] Step with 71 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}] Step with 44 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {}] Step with 42 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}] Step with 69 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}] Step with 41 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}] Step with 41 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}] Acceleration Failed marked recursive suffix as redundant Step with 40 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T]}] Step with 68 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T]}, {68[T]}] Acceleration Failed marked recursive suffix as redundant Step with 67 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T]}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}] Step with 70 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}] Step with 44 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {}] Step with 41 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T]}] Step with 42 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}] Step with 69 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}] Step with 41 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}] Step with 65 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T]}] Step with 66 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}] Step with 48 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}] Step with 70 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T], 70[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}] Step with 48 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}] Step with 70 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}] Step with 71 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}] Step with 44 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {}] Step with 42 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}] Step with 69 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}] Step with 41 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}] Step with 41 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}] Step with 70 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}] Step with 44 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {}] Step with 41 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T]}] Step with 42 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}] Step with 69 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}] Step with 41 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}] Step with 66 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}] Step with 70 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T], 70[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}] Step with 70 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T], 70[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}] Step with 70 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 70[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 54[T], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 54[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {40[T], 68[T]}] Step with 39 Trace 61[T], 54[T], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {40[T], 68[T]}, {}] Step with 36 Trace 61[T], 54[T], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {40[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 54[T], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {40[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 54[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Step with 38 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}] Step with 48 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}, {}] Step with 43 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}, {}, {}] Covered Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}, {43[T]}] Step with 70 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {}, {43[T], 70[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T]}] Step with 66 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}, {}, {}] Covered Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}, {43[T]}] Step with 70 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {66[T]}, {43[T], 70[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}] Step with 64 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}] Step with 37 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}, {}] Step with 43 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}, {}, {}] Covered Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}, {43[T]}] Step with 70 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {}, {43[T], 70[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}] Covered Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}] Step with 70 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Covered Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 70[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 54[T], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 54[T] Blocked [{}, {49[T], 51[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T] Blocked [{}, {49[T], 51[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}] Step with 53 Trace 61[T], 53[T] Blocked [{}, {49[T], 51[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}] Backtrack Trace 61[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}] Step with 52 Trace 61[T], 52[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}] Step with 37 Trace 61[T], 52[T], 37[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {}] Backtrack Trace 61[T], 52[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}] Step with 38 Trace 61[T], 52[T], 38[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}] Step with 48 Trace 61[T], 52[T], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}] Step with 43 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {}] Step with 68 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}] Step with 70 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}] Step with 71 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}] Step with 44 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {}] Step with 42 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}] Step with 69 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}] Step with 41 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}] Step with 41 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}] Step with 43 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}] Step with 68 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {44[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}] Step with 70 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {70[T]}] Step with 43 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}] Step with 44 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {}] Step with 41 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T]}] Step with 42 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}] Step with 69 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}] Step with 41 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 70[T], 71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 52[T], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 38[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}] Step with 65 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}] Step with 66 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}] Step with 48 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {}] Step with 38 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {38[T]}] Step with 64 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {38[T]}, {64[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {38[T], 64[T]}] Step with 37 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {38[T], 64[T]}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {44[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}] Step with 70 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {70[T]}] Step with 43 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {66[T]}, {43[T], 44[T], 70[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}] Step with 48 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}] Step with 43 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {}] Step with 37 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 37[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T]}] Step with 38 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 38[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T], 38[T]}, {64[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {68[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}] Step with 70 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}] Step with 71 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}] Step with 44 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {}] Step with 42 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}] Step with 69 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}] Step with 41 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}] Step with 41 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {42[T], 69[T]}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}] Step with 43 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {44[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}] Step with 70 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {70[T]}] Step with 43 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 71[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 71[(-n12+x1^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}] Step with 44 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {}] Step with 41 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 41[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T]}] Step with 42 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 42[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}] Step with 69 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}] Step with 41 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 41[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {69[T]}, {}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}] Step with 42 Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)], 42[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 69[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)], 69[(-1+n10 >= 0 /\ -1-n10+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T], 44[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 70[T], 71[T]}, {41[T], 42[T], 69[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {65[T], 66[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 38[T], 65[(-1+n6 >= 0 /\ -n6+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 52[T], 38[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}] Step with 66 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}] Step with 68 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {44[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}] Step with 70 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {70[T]}] Step with 43 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 44[T], 70[T]}] Backtrack Trace 61[T], 52[T], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 52[T], 38[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 52[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}] Step with 64 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {64[T]}] Step with 37 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 37[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {64[T]}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}] Step with 38 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}] Step with 48 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}] Step with 43 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {}] Step with 68 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {}, {68[T]}] Step with 67 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {68[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {68[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}] Step with 70 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {}, {43[T], 70[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T]}] Step with 66 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}] Step with 48 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}] Step with 43 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}] Step with 68 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {68[T]}] Step with 67 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {68[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {68[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {40[T], 67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}] Step with 70 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {70[T]}] Step with 43 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}] Step with 68 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}] Step with 67 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {68[T]}, {67[T]}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {67[T], 68[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 67[T], 68[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}] Step with 67 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}] Step with 39 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}] Step with 36 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)], 36[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {}, {}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 39[(x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {67[T]}, {36[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}] Step with 40 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 40[(1-x0^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 67[T]}, {}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}] Step with 68 Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)], 68[(-n9+x0^0 >= 0 /\ -x1^0 >= 0 /\ -1+n9 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T]}, {68[T]}] Covered Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)], 67[(-x1^0 >= 0 /\ -1+n8 >= 0 /\ -n8-(-1+n8)*n54-n54+x0^0 >= 0 /\ -n8-(-1+n8)*n54+x0^0 >= 0 /\ -1+n54 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 68[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)], 43[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {44[T], 70[T], 71[T]}, {39[T], 40[T], 67[T], 68[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T], 70[(-x1^0 >= 0 /\ -1+n11 >= 0 /\ -n11+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T]}, {43[T], 44[T], 70[T], 71[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)], 48[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {66[T]}, {43[T], 70[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T], 66[(-x1^0 >= 0 /\ -1+n7 >= 0 /\ -n7+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T]}, {48[T], 66[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)], 38[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 64[T]}, {48[T], 65[T], 66[T]}] Backtrack Trace 61[T], 52[T], 64[(-x1^0 >= 0 /\ -1+n5 >= 0 /\ -1-n5+x0^0 >= 0)] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T], 52[T] Blocked [{}, {49[T], 51[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {37[T], 38[T], 64[T]}] Backtrack Trace 61[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}] Step with 50 Trace 61[T], 50[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}] Step with 35 Trace 61[T], 50[T], 35[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {}] Step with 32 Trace 61[T], 50[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {}, {}] Step with 45 Trace 61[T], 50[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {}, {}, {}] Backtrack Trace 61[T], 50[T], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {}, {45[T]}] Backtrack Trace 61[T], 50[T], 35[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T]}] Step with 33 Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 34[T]}, {}] Step with 47 Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 34[T]}, {}, {}] Covered Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 34[T]}, {47[T]}] Step with 72 Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 34[T]}, {47[T]}, {72[T]}] Step with 46 Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 46[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 34[T]}, {47[T]}, {72[T]}, {}] Backtrack Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 34[T]}, {47[T]}, {46[T], 72[T]}] Step with 47 Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 34[T]}, {47[T]}, {46[T], 72[T]}, {}] Covered Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 34[T]}, {47[T]}, {46[T], 47[T], 72[T]}] Backtrack Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 34[T]}, {47[T], 72[T]}] Step with 46 Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 34[T]}, {47[T], 72[T]}, {}] Backtrack Trace 61[T], 50[T], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 34[T]}, {46[T], 47[T], 72[T]}] Backtrack Trace 61[T], 50[T], 35[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}] Step with 62 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {62[T]}] Step with 31 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {62[T]}, {}] Step with 45 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}] Step with 32 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}] Step with 45 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 62[T]}] Step with 33 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}] Step with 46 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T]}] Step with 47 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T]}, {}] Covered Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}] Step with 72 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}, {72[T]}] Step with 46 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 46[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}, {72[T]}, {}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}, {46[T], 72[T]}] Step with 47 Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}, {46[T], 72[T]}, {}] Covered Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}, {46[T], 47[T], 72[T]}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T], 72[T]}] Backtrack Trace 61[T], 50[T], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 50[T], 35[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T], 62[T]}] Step with 31 Trace 61[T], 50[T], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T], 62[T]}, {}] Step with 45 Trace 61[T], 50[T], 35[T], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {32[T], 33[T], 34[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 35[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 50[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}] Step with 63 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}] Step with 35 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {}] Step with 31 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {}, {}] Step with 45 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {}, {}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {}, {45[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T]}] Step with 32 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T]}, {}] Step with 45 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T]}] Step with 33 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 34[T]}, {}] Step with 47 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 34[T]}, {}, {}] Covered Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 34[T]}, {47[T]}] Step with 72 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 34[T]}, {47[T]}, {72[T]}] Step with 46 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 46[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 34[T]}, {47[T]}, {72[T]}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 34[T]}, {47[T]}, {46[T], 72[T]}] Step with 47 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 34[T]}, {47[T]}, {46[T], 72[T]}, {}] Covered Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 34[T]}, {47[T]}, {46[T], 47[T], 72[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 34[T]}, {47[T], 72[T]}] Step with 46 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 34[T]}, {47[T], 72[T]}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 34[T]}, {46[T], 47[T], 72[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}] Step with 62 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}] Step with 31 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}, {}] Step with 45 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 31[(x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}] Step with 32 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}] Step with 45 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)], 45[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 32[(-x1^0 <= 0 /\ -x1^0 == 0 /\ x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 62[T]}, {45[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 62[T]}] Step with 33 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}] Step with 46 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 46[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T]}] Step with 47 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 47[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T]}, {}] Covered Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}] Step with 72 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}, {72[T]}] Step with 46 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 46[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}, {72[T]}, {}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}, {46[T], 72[T]}] Step with 47 Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)], 47[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}, {46[T], 72[T]}, {}] Covered Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)], 72[(-1+n14 >= 0 /\ -1-n14+x1^0 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T]}, {46[T], 47[T], 72[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)], 33[(1-x1^0 <= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 34[T], 62[T]}, {46[T], 47[T], 72[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T], 62[(x1^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)], 35[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {63[T]}, {31[T], 32[T], 33[T], 34[T], 62[T]}] Backtrack Trace 61[T], 50[T], 63[(-n2+x1^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T]}, {35[T], 63[T]}] Backtrack Trace 61[T], 50[T] Blocked [{}, {49[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}, {35[T], 63[T]}] Backtrack Trace 61[T] Blocked [{}, {49[T], 50[T], 51[T], 52[T], 53[T], 54[T], 55[T], 56[T], 57[T], 58[T], 59[T], 60[T]}] Backtrack Trace Blocked [{61[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b