unknown Initial ITS Start location: l3 Program variables: x^0 0: l0 -> l1 : x^0'=x^post1, (1-x^post1 <= 0 /\ 1000+x^post1-x^0 == 0), cost: 1 1: l1 -> l0 : x^0'=x^post2, -x^post2+x^0 == 0, cost: 1 2: l2 -> l0 : x^0'=x^post3, -x^post3+x^0 == 0, cost: 1 3: l3 -> l2 : x^0'=x^post4, -x^post4+x^0 == 0, cost: 1 Chained Linear Paths Start location: l3 Program variables: x^0 5: l0 -> l0 : x^0'=x^post2, (1-x^post1 <= 0 /\ 1000+x^post1-x^0 == 0 /\ x^post1-x^post2 == 0), cost: 1 4: l3 -> l0 : x^0'=x^post3, (-x^post4+x^0 == 0 /\ -x^post3+x^post4 == 0), cost: 1 Eliminating location l2 by chaining: Applied chaining First rule: l3 -> l2 : x^0'=x^post4, -x^post4+x^0 == 0, cost: 1 Second rule: l2 -> l0 : x^0'=x^post3, -x^post3+x^0 == 0, cost: 1 New rule: l3 -> l0 : x^0'=x^post3, (-x^post4+x^0 == 0 /\ -x^post3+x^post4 == 0), cost: 1 Applied deletion Removed the following rules: 2 3 Eliminating location l1 by chaining: Applied chaining First rule: l0 -> l1 : x^0'=x^post1, (1-x^post1 <= 0 /\ 1000+x^post1-x^0 == 0), cost: 1 Second rule: l1 -> l0 : x^0'=x^post2, -x^post2+x^0 == 0, cost: 1 New rule: l0 -> l0 : x^0'=x^post2, (1-x^post1 <= 0 /\ 1000+x^post1-x^0 == 0 /\ x^post1-x^post2 == 0), cost: 1 Applied deletion Removed the following rules: 0 1 Simplified Transitions Start location: l3 Program variables: x^0 7: l0 -> l0 : x^0'=-1000+x^0, 1001-x^0 <= 0, cost: 1 6: l3 -> l0 : T, cost: 1 Propagated Equalities Original rule: l3 -> l0 : x^0'=x^post3, (-x^post4+x^0 == 0 /\ -x^post3+x^post4 == 0), cost: 1 New rule: l3 -> l0 : x^0'=x^post4, (0 == 0 /\ -x^post4+x^0 == 0), cost: 1 propagated equality x^post3 = x^post4 Propagated Equalities Original rule: l3 -> l0 : x^0'=x^post4, (0 == 0 /\ -x^post4+x^0 == 0), cost: 1 New rule: l3 -> l0 : x^0'=x^0, 0 == 0, cost: 1 propagated equality x^post4 = x^0 Simplified Guard Original rule: l3 -> l0 : x^0'=x^0, 0 == 0, cost: 1 New rule: l3 -> l0 : x^0'=x^0, T, cost: 1 Removed Trivial Updates Original rule: l3 -> l0 : x^0'=x^0, T, cost: 1 New rule: l3 -> l0 : T, cost: 1 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post2, (1-x^post1 <= 0 /\ 1000+x^post1-x^0 == 0 /\ x^post1-x^post2 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^post1, (0 == 0 /\ 1-x^post1 <= 0 /\ 1000+x^post1-x^0 == 0), cost: 1 propagated equality x^post2 = x^post1 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post1, (0 == 0 /\ 1-x^post1 <= 0 /\ 1000+x^post1-x^0 == 0), cost: 1 New rule: l0 -> l0 : x^0'=-1000+x^0, (0 == 0 /\ 1001-x^0 <= 0), cost: 1 propagated equality x^post1 = -1000+x^0 Simplified Guard Original rule: l0 -> l0 : x^0'=-1000+x^0, (0 == 0 /\ 1001-x^0 <= 0), cost: 1 New rule: l0 -> l0 : x^0'=-1000+x^0, 1001-x^0 <= 0, cost: 1 Step with 6 Trace 6[T] Blocked [{}, {}] Step with 7 Trace 6[T], 7[(1001-x^0 <= 0)] Blocked [{}, {}, {}] Accelerate Start location: l3 Program variables: x^0 7: l0 -> l0 : x^0'=-1000+x^0, 1001-x^0 <= 0, cost: 1 8: l0 -> l0 : x^0'=-1000*n+x^0, (-1+n >= 0 /\ -1-1000*n+x^0 >= 0), cost: 1 6: l3 -> l0 : T, cost: 1 Loop Acceleration Original rule: l0 -> l0 : x^0'=-1000+x^0, (1001-x^0 <= 0), cost: 1 New rule: l0 -> l0 : x^0'=-1000*n+x^0, (-1+n >= 0 /\ -1-1000*n+x^0 >= 0), cost: 1 -1001+x^0 >= 0 [0]: montonic decrease yields -1-1000*n+x^0 >= 0 -1001+x^0 >= 0 [1]: eventual increase yields (-1001+x^0 >= 0 /\ 1000 <= 0) Replacement map: {-1001+x^0 >= 0 -> -1-1000*n+x^0 >= 0} Trace 6[T], 8[(-1+n >= 0 /\ -1-1000*n+x^0 >= 0)] Blocked [{}, {}, {7[T], 8[T]}] Backtrack Trace 6[T] Blocked [{}, {8[T]}] Step with 7 Trace 6[T], 7[(1001-x^0 <= 0)] Blocked [{}, {8[T]}, {}] Covered Trace 6[T] Blocked [{}, {7[T], 8[T]}] Backtrack Trace Blocked [{6[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b