NO Initial ITS Start location: l4 Program variables: x^0 y^0 0: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, (y^0-y^post1 == 0 /\ 1+x^0 <= 0 /\ -x^post1+x^0 == 0), cost: 1 1: l0 -> l2 : x^0'=x^post2, y^0'=y^post2, (-y^post2+y^0 == 0 /\ -x^0 <= 0 /\ y^0-x^0+x^post2 == 0), cost: 1 2: l2 -> l0 : x^0'=x^post3, y^0'=y^post3, (-x^post3+x^0 == 0 /\ y^0-y^post3 == 0), cost: 1 3: l3 -> l0 : x^0'=x^post4, y^0'=y^post4, (-x^post4+x^0 == 0 /\ 1-x^0 <= 0 /\ y^0-y^post4 == 0 /\ 1+y^0+x^0 <= 0), cost: 1 4: l4 -> l3 : x^0'=x^post5, y^0'=y^post5, (x^0-x^post5 == 0 /\ -y^post5+y^0 == 0), cost: 1 Chained Linear Paths Start location: l4 Program variables: x^0 y^0 0: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, (y^0-y^post1 == 0 /\ 1+x^0 <= 0 /\ -x^post1+x^0 == 0), cost: 1 6: l0 -> l0 : x^0'=x^post3, y^0'=y^post3, (-y^post2+y^0 == 0 /\ -x^post3+x^post2 == 0 /\ -x^0 <= 0 /\ y^post2-y^post3 == 0 /\ y^0-x^0+x^post2 == 0), cost: 1 5: l4 -> l0 : x^0'=x^post4, y^0'=y^post4, (1+y^post5+x^post5 <= 0 /\ x^0-x^post5 == 0 /\ 1-x^post5 <= 0 /\ y^post5-y^post4 == 0 /\ -y^post5+y^0 == 0 /\ -x^post4+x^post5 == 0), cost: 1 Eliminating location l3 by chaining: Applied chaining First rule: l4 -> l3 : x^0'=x^post5, y^0'=y^post5, (x^0-x^post5 == 0 /\ -y^post5+y^0 == 0), cost: 1 Second rule: l3 -> l0 : x^0'=x^post4, y^0'=y^post4, (-x^post4+x^0 == 0 /\ 1-x^0 <= 0 /\ y^0-y^post4 == 0 /\ 1+y^0+x^0 <= 0), cost: 1 New rule: l4 -> l0 : x^0'=x^post4, y^0'=y^post4, (1+y^post5+x^post5 <= 0 /\ x^0-x^post5 == 0 /\ 1-x^post5 <= 0 /\ y^post5-y^post4 == 0 /\ -y^post5+y^0 == 0 /\ -x^post4+x^post5 == 0), cost: 1 Applied deletion Removed the following rules: 3 4 Eliminating location l2 by chaining: Applied chaining First rule: l0 -> l2 : x^0'=x^post2, y^0'=y^post2, (-y^post2+y^0 == 0 /\ -x^0 <= 0 /\ y^0-x^0+x^post2 == 0), cost: 1 Second rule: l2 -> l0 : x^0'=x^post3, y^0'=y^post3, (-x^post3+x^0 == 0 /\ y^0-y^post3 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^post3, y^0'=y^post3, (-y^post2+y^0 == 0 /\ -x^post3+x^post2 == 0 /\ -x^0 <= 0 /\ y^post2-y^post3 == 0 /\ y^0-x^0+x^post2 == 0), cost: 1 Applied deletion Removed the following rules: 1 2 Simplified Transitions Start location: l4 Program variables: x^0 y^0 7: l0 -> l1 : 1+x^0 <= 0, cost: 1 9: l0 -> l0 : x^0'=-y^0+x^0, -x^0 <= 0, cost: 1 8: l4 -> l0 : (1-x^0 <= 0 /\ 1+y^0+x^0 <= 0), cost: 1 Propagated Equalities Original rule: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, (y^0-y^post1 == 0 /\ 1+x^0 <= 0 /\ -x^post1+x^0 == 0), cost: 1 New rule: l0 -> l1 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1+x^0 <= 0), cost: 1 propagated equality y^post1 = y^0 propagated equality x^post1 = x^0 Simplified Guard Original rule: l0 -> l1 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1+x^0 <= 0), cost: 1 New rule: l0 -> l1 : x^0'=x^0, y^0'=y^0, 1+x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : x^0'=x^0, y^0'=y^0, 1+x^0 <= 0, cost: 1 New rule: l0 -> l1 : 1+x^0 <= 0, cost: 1 Propagated Equalities Original rule: l4 -> l0 : x^0'=x^post4, y^0'=y^post4, (1+y^post5+x^post5 <= 0 /\ x^0-x^post5 == 0 /\ 1-x^post5 <= 0 /\ y^post5-y^post4 == 0 /\ -y^post5+y^0 == 0 /\ -x^post4+x^post5 == 0), cost: 1 New rule: l4 -> l0 : x^0'=x^post5, y^0'=y^post5, (0 == 0 /\ 1+y^post5+x^post5 <= 0 /\ x^0-x^post5 == 0 /\ 1-x^post5 <= 0 /\ -y^post5+y^0 == 0), cost: 1 propagated equality y^post4 = y^post5 propagated equality x^post4 = x^post5 Propagated Equalities Original rule: l4 -> l0 : x^0'=x^post5, y^0'=y^post5, (0 == 0 /\ 1+y^post5+x^post5 <= 0 /\ x^0-x^post5 == 0 /\ 1-x^post5 <= 0 /\ -y^post5+y^0 == 0), cost: 1 New rule: l4 -> l0 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1-x^0 <= 0 /\ 1+y^0+x^0 <= 0), cost: 1 propagated equality x^post5 = x^0 propagated equality y^post5 = y^0 Simplified Guard Original rule: l4 -> l0 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1-x^0 <= 0 /\ 1+y^0+x^0 <= 0), cost: 1 New rule: l4 -> l0 : x^0'=x^0, y^0'=y^0, (1-x^0 <= 0 /\ 1+y^0+x^0 <= 0), cost: 1 Removed Trivial Updates Original rule: l4 -> l0 : x^0'=x^0, y^0'=y^0, (1-x^0 <= 0 /\ 1+y^0+x^0 <= 0), cost: 1 New rule: l4 -> l0 : (1-x^0 <= 0 /\ 1+y^0+x^0 <= 0), cost: 1 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post3, y^0'=y^post3, (-y^post2+y^0 == 0 /\ -x^post3+x^post2 == 0 /\ -x^0 <= 0 /\ y^post2-y^post3 == 0 /\ y^0-x^0+x^post2 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, (0 == 0 /\ -y^post2+y^0 == 0 /\ -x^0 <= 0 /\ y^0-x^0+x^post2 == 0), cost: 1 propagated equality x^post3 = x^post2 propagated equality y^post3 = y^post2 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, (0 == 0 /\ -y^post2+y^0 == 0 /\ -x^0 <= 0 /\ y^0-x^0+x^post2 == 0), cost: 1 New rule: l0 -> l0 : x^0'=-y^0+x^0, y^0'=y^0, (0 == 0 /\ -x^0 <= 0), cost: 1 propagated equality y^post2 = y^0 propagated equality x^post2 = -y^0+x^0 Simplified Guard Original rule: l0 -> l0 : x^0'=-y^0+x^0, y^0'=y^0, (0 == 0 /\ -x^0 <= 0), cost: 1 New rule: l0 -> l0 : x^0'=-y^0+x^0, y^0'=y^0, -x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l0 : x^0'=-y^0+x^0, y^0'=y^0, -x^0 <= 0, cost: 1 New rule: l0 -> l0 : x^0'=-y^0+x^0, -x^0 <= 0, cost: 1 Step with 8 Trace 8[(1-x^0 <= 0 /\ 1+y^0+x^0 <= 0)] Blocked [{}, {}] Step with 9 Trace 8[(1-x^0 <= 0 /\ 1+y^0+x^0 <= 0)], 9[(-x^0 <= 0)] Blocked [{}, {7[T]}, {}] Nonterm Start location: l4 Program variables: x^0 y^0 7: l0 -> l1 : 1+x^0 <= 0, cost: 1 9: l0 -> l0 : x^0'=-y^0+x^0, -x^0 <= 0, cost: 1 10: l0 -> LoAT_sink : (y^0 <= 0 /\ x^0 >= 0), cost: NONTERM 11: l0 -> l0 : x^0'=-y^0*n+x^0, (-y^0*(-1+n)+x^0 >= 0 /\ x^0 >= 0 /\ -1+n >= 0), cost: 1 8: l4 -> l0 : (1-x^0 <= 0 /\ 1+y^0+x^0 <= 0), cost: 1 Certificate of Non-Termination Original rule: l0 -> l0 : x^0'=-y^0+x^0, (-x^0 <= 0), cost: 1 New rule: l0 -> LoAT_sink : (y^0 <= 0 /\ x^0 >= 0), cost: NONTERM x^0 >= 0 [0]: eventual decrease yields (-y^0*(-1+n)+x^0 >= 0 /\ x^0 >= 0) x^0 >= 0 [1]: eventual increase yields (y^0 <= 0 /\ x^0 >= 0) Replacement map: {x^0 >= 0 -> (y^0 <= 0 /\ x^0 >= 0)} Loop Acceleration Original rule: l0 -> l0 : x^0'=-y^0+x^0, (-x^0 <= 0), cost: 1 New rule: l0 -> l0 : x^0'=-y^0*n+x^0, (-y^0*(-1+n)+x^0 >= 0 /\ x^0 >= 0 /\ -1+n >= 0), cost: 1 x^0 >= 0 [0]: eventual decrease yields (-y^0*(-1+n)+x^0 >= 0 /\ x^0 >= 0) x^0 >= 0 [1]: eventual increase yields (y^0 <= 0 /\ x^0 >= 0) Replacement map: {x^0 >= 0 -> (-y^0*(-1+n)+x^0 >= 0 /\ x^0 >= 0)} Step with 10 Trace 8[(1-x^0 <= 0 /\ 1+y^0+x^0 <= 0)], 10[(y^0 <= 0 /\ x^0 >= 0)] Blocked [{}, {7[T]}, {10[T]}] Refute Counterexample [ x^0=1 y^0=-2 ] 8 [ x^0=1 y^0=-2 ] 10 NO Build SHA: a05f16bf13df659c382799650051f91bf6828c7b