unknown Initial ITS Start location: l9 Program variables: x^0 y^0 z^0 0: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, z^0'=z^post1, (-y^post1+y^0 == 0 /\ 1-x^0+x^post1 == 0 /\ -z^post1+z^0 == 0 /\ 1-x^0 <= 0), cost: 1 1: l1 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (x^0-x^post2 == 0 /\ -z^post2+z^0 == 0 /\ -y^post2+y^0 == 0), cost: 1 2: l2 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (y^0 <= 0 /\ x^0-x^post3 == 0 /\ -z^post3+z^0 == 0 /\ -y^post3+y^0 == 0), cost: 1 3: l2 -> l3 : x^0'=x^post4, y^0'=y^post4, z^0'=z^post4, (-z^post4+z^0 == 0 /\ 1-y^0 <= 0 /\ x^0-x^post4 == 0 /\ 1+y^post4-y^0 == 0), cost: 1 4: l3 -> l2 : x^0'=x^post5, y^0'=y^post5, z^0'=z^post5, (y^0-y^post5 == 0 /\ -z^post5+z^0 == 0 /\ -x^post5+x^0 == 0), cost: 1 5: l4 -> l2 : x^0'=x^post6, y^0'=y^post6, z^0'=z^post6, (-x^post6+x^0 == 0 /\ -z^post6+z^0 == 0 /\ -x^0+z^0 <= 0 /\ y^0-y^post6 == 0), cost: 1 6: l4 -> l5 : x^0'=x^post7, y^0'=y^post7, z^0'=z^post7, (1+x^0-z^0 <= 0 /\ -z^post7+z^0 == 0 /\ y^0-y^post7 == 0 /\ -1+x^post7-x^0 == 0), cost: 1 7: l5 -> l4 : x^0'=x^post8, y^0'=y^post8, z^0'=z^post8, (y^0-y^post8 == 0 /\ z^0-z^post8 == 0 /\ -x^post8+x^0 == 0), cost: 1 8: l6 -> l4 : x^0'=x^post9, y^0'=y^post9, z^0'=z^post9, (y^0-y^post9 == 0 /\ -x^post9+x^0 == 0 /\ -z^post9+z^0 == 0 /\ y^0-z^0 <= 0), cost: 1 9: l6 -> l7 : x^0'=x^post10, y^0'=y^post10, z^0'=z^post10, (-x^post10+x^0 == 0 /\ 1-y^0+z^0 <= 0 /\ -z^post10+z^0 == 0 /\ 1-y^0+y^post10 == 0), cost: 1 10: l7 -> l6 : x^0'=x^post11, y^0'=y^post11, z^0'=z^post11, (-z^post11+z^0 == 0 /\ -x^post11+x^0 == 0 /\ y^0-y^post11 == 0), cost: 1 11: l8 -> l6 : x^0'=x^post12, y^0'=y^post12, z^0'=z^post12, (x^post12 == 0 /\ -z^post12+z^0 == 0 /\ y^0-y^post12 == 0), cost: 1 12: l9 -> l8 : x^0'=x^post13, y^0'=y^post13, z^0'=z^post13, (x^0-x^post13 == 0 /\ -z^post13+z^0 == 0 /\ -y^post13+y^0 == 0), cost: 1 Chained Linear Paths Start location: l9 Program variables: x^0 y^0 z^0 17: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (-y^post1+y^0 == 0 /\ -y^post2+y^post1 == 0 /\ 1-x^0+x^post1 == 0 /\ -z^post1+z^0 == 0 /\ -z^post2+z^post1 == 0 /\ 1-x^0 <= 0 /\ -x^post2+x^post1 == 0), cost: 1 2: l2 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (y^0 <= 0 /\ x^0-x^post3 == 0 /\ -z^post3+z^0 == 0 /\ -y^post3+y^0 == 0), cost: 1 16: l2 -> l2 : x^0'=x^post5, y^0'=y^post5, z^0'=z^post5, (-z^post5+z^post4 == 0 /\ -z^post4+z^0 == 0 /\ 1-y^0 <= 0 /\ y^post4-y^post5 == 0 /\ x^0-x^post4 == 0 /\ 1+y^post4-y^0 == 0 /\ -x^post5+x^post4 == 0), cost: 1 5: l4 -> l2 : x^0'=x^post6, y^0'=y^post6, z^0'=z^post6, (-x^post6+x^0 == 0 /\ -z^post6+z^0 == 0 /\ -x^0+z^0 <= 0 /\ y^0-y^post6 == 0), cost: 1 15: l4 -> l4 : x^0'=x^post8, y^0'=y^post8, z^0'=z^post8, (z^post7-z^post8 == 0 /\ -y^post8+y^post7 == 0 /\ 1+x^0-z^0 <= 0 /\ -z^post7+z^0 == 0 /\ -x^post8+x^post7 == 0 /\ y^0-y^post7 == 0 /\ -1+x^post7-x^0 == 0), cost: 1 8: l6 -> l4 : x^0'=x^post9, y^0'=y^post9, z^0'=z^post9, (y^0-y^post9 == 0 /\ -x^post9+x^0 == 0 /\ -z^post9+z^0 == 0 /\ y^0-z^0 <= 0), cost: 1 14: l6 -> l6 : x^0'=x^post11, y^0'=y^post11, z^0'=z^post11, (-x^post11+x^post10 == 0 /\ -z^post11+z^post10 == 0 /\ -y^post11+y^post10 == 0 /\ -x^post10+x^0 == 0 /\ 1-y^0+z^0 <= 0 /\ -z^post10+z^0 == 0 /\ 1-y^0+y^post10 == 0), cost: 1 13: l9 -> l6 : x^0'=x^post12, y^0'=y^post12, z^0'=z^post12, (x^post12 == 0 /\ x^0-x^post13 == 0 /\ -z^post13+z^0 == 0 /\ -y^post13+y^0 == 0 /\ y^post13-y^post12 == 0 /\ -z^post12+z^post13 == 0), cost: 1 Eliminating location l8 by chaining: Applied chaining First rule: l9 -> l8 : x^0'=x^post13, y^0'=y^post13, z^0'=z^post13, (x^0-x^post13 == 0 /\ -z^post13+z^0 == 0 /\ -y^post13+y^0 == 0), cost: 1 Second rule: l8 -> l6 : x^0'=x^post12, y^0'=y^post12, z^0'=z^post12, (x^post12 == 0 /\ -z^post12+z^0 == 0 /\ y^0-y^post12 == 0), cost: 1 New rule: l9 -> l6 : x^0'=x^post12, y^0'=y^post12, z^0'=z^post12, (x^post12 == 0 /\ x^0-x^post13 == 0 /\ -z^post13+z^0 == 0 /\ -y^post13+y^0 == 0 /\ y^post13-y^post12 == 0 /\ -z^post12+z^post13 == 0), cost: 1 Applied deletion Removed the following rules: 11 12 Eliminating location l7 by chaining: Applied chaining First rule: l6 -> l7 : x^0'=x^post10, y^0'=y^post10, z^0'=z^post10, (-x^post10+x^0 == 0 /\ 1-y^0+z^0 <= 0 /\ -z^post10+z^0 == 0 /\ 1-y^0+y^post10 == 0), cost: 1 Second rule: l7 -> l6 : x^0'=x^post11, y^0'=y^post11, z^0'=z^post11, (-z^post11+z^0 == 0 /\ -x^post11+x^0 == 0 /\ y^0-y^post11 == 0), cost: 1 New rule: l6 -> l6 : x^0'=x^post11, y^0'=y^post11, z^0'=z^post11, (-x^post11+x^post10 == 0 /\ -z^post11+z^post10 == 0 /\ -y^post11+y^post10 == 0 /\ -x^post10+x^0 == 0 /\ 1-y^0+z^0 <= 0 /\ -z^post10+z^0 == 0 /\ 1-y^0+y^post10 == 0), cost: 1 Applied deletion Removed the following rules: 9 10 Eliminating location l5 by chaining: Applied chaining First rule: l4 -> l5 : x^0'=x^post7, y^0'=y^post7, z^0'=z^post7, (1+x^0-z^0 <= 0 /\ -z^post7+z^0 == 0 /\ y^0-y^post7 == 0 /\ -1+x^post7-x^0 == 0), cost: 1 Second rule: l5 -> l4 : x^0'=x^post8, y^0'=y^post8, z^0'=z^post8, (y^0-y^post8 == 0 /\ z^0-z^post8 == 0 /\ -x^post8+x^0 == 0), cost: 1 New rule: l4 -> l4 : x^0'=x^post8, y^0'=y^post8, z^0'=z^post8, (z^post7-z^post8 == 0 /\ -y^post8+y^post7 == 0 /\ 1+x^0-z^0 <= 0 /\ -z^post7+z^0 == 0 /\ -x^post8+x^post7 == 0 /\ y^0-y^post7 == 0 /\ -1+x^post7-x^0 == 0), cost: 1 Applied deletion Removed the following rules: 6 7 Eliminating location l3 by chaining: Applied chaining First rule: l2 -> l3 : x^0'=x^post4, y^0'=y^post4, z^0'=z^post4, (-z^post4+z^0 == 0 /\ 1-y^0 <= 0 /\ x^0-x^post4 == 0 /\ 1+y^post4-y^0 == 0), cost: 1 Second rule: l3 -> l2 : x^0'=x^post5, y^0'=y^post5, z^0'=z^post5, (y^0-y^post5 == 0 /\ -z^post5+z^0 == 0 /\ -x^post5+x^0 == 0), cost: 1 New rule: l2 -> l2 : x^0'=x^post5, y^0'=y^post5, z^0'=z^post5, (-z^post5+z^post4 == 0 /\ -z^post4+z^0 == 0 /\ 1-y^0 <= 0 /\ y^post4-y^post5 == 0 /\ x^0-x^post4 == 0 /\ 1+y^post4-y^0 == 0 /\ -x^post5+x^post4 == 0), cost: 1 Applied deletion Removed the following rules: 3 4 Eliminating location l1 by chaining: Applied chaining First rule: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, z^0'=z^post1, (-y^post1+y^0 == 0 /\ 1-x^0+x^post1 == 0 /\ -z^post1+z^0 == 0 /\ 1-x^0 <= 0), cost: 1 Second rule: l1 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (x^0-x^post2 == 0 /\ -z^post2+z^0 == 0 /\ -y^post2+y^0 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (-y^post1+y^0 == 0 /\ -y^post2+y^post1 == 0 /\ 1-x^0+x^post1 == 0 /\ -z^post1+z^0 == 0 /\ -z^post2+z^post1 == 0 /\ 1-x^0 <= 0 /\ -x^post2+x^post1 == 0), cost: 1 Applied deletion Removed the following rules: 0 1 Simplified Transitions Start location: l9 Program variables: x^0 y^0 z^0 25: l0 -> l0 : x^0'=-1+x^0, 1-x^0 <= 0, cost: 1 18: l2 -> l0 : y^0 <= 0, cost: 1 24: l2 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 19: l4 -> l2 : -x^0+z^0 <= 0, cost: 1 23: l4 -> l4 : x^0'=1+x^0, 1+x^0-z^0 <= 0, cost: 1 20: l6 -> l4 : y^0-z^0 <= 0, cost: 1 22: l6 -> l6 : y^0'=-1+y^0, 1-y^0+z^0 <= 0, cost: 1 21: l9 -> l6 : x^0'=0, T, cost: 1 Propagated Equalities Original rule: l2 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (y^0 <= 0 /\ x^0-x^post3 == 0 /\ -z^post3+z^0 == 0 /\ -y^post3+y^0 == 0), cost: 1 New rule: l2 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ y^0 <= 0), cost: 1 propagated equality x^post3 = x^0 propagated equality z^post3 = z^0 propagated equality y^post3 = y^0 Simplified Guard Original rule: l2 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ y^0 <= 0), cost: 1 New rule: l2 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, y^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l2 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, y^0 <= 0, cost: 1 New rule: l2 -> l0 : y^0 <= 0, cost: 1 Propagated Equalities Original rule: l4 -> l2 : x^0'=x^post6, y^0'=y^post6, z^0'=z^post6, (-x^post6+x^0 == 0 /\ -z^post6+z^0 == 0 /\ -x^0+z^0 <= 0 /\ y^0-y^post6 == 0), cost: 1 New rule: l4 -> l2 : x^0'=x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ -x^0+z^0 <= 0), cost: 1 propagated equality x^post6 = x^0 propagated equality z^post6 = z^0 propagated equality y^post6 = y^0 Simplified Guard Original rule: l4 -> l2 : x^0'=x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ -x^0+z^0 <= 0), cost: 1 New rule: l4 -> l2 : x^0'=x^0, y^0'=y^0, z^0'=z^0, -x^0+z^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l4 -> l2 : x^0'=x^0, y^0'=y^0, z^0'=z^0, -x^0+z^0 <= 0, cost: 1 New rule: l4 -> l2 : -x^0+z^0 <= 0, cost: 1 Propagated Equalities Original rule: l6 -> l4 : x^0'=x^post9, y^0'=y^post9, z^0'=z^post9, (y^0-y^post9 == 0 /\ -x^post9+x^0 == 0 /\ -z^post9+z^0 == 0 /\ y^0-z^0 <= 0), cost: 1 New rule: l6 -> l4 : x^0'=x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ y^0-z^0 <= 0), cost: 1 propagated equality y^post9 = y^0 propagated equality x^post9 = x^0 propagated equality z^post9 = z^0 Simplified Guard Original rule: l6 -> l4 : x^0'=x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ y^0-z^0 <= 0), cost: 1 New rule: l6 -> l4 : x^0'=x^0, y^0'=y^0, z^0'=z^0, y^0-z^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l6 -> l4 : x^0'=x^0, y^0'=y^0, z^0'=z^0, y^0-z^0 <= 0, cost: 1 New rule: l6 -> l4 : y^0-z^0 <= 0, cost: 1 Propagated Equalities Original rule: l9 -> l6 : x^0'=x^post12, y^0'=y^post12, z^0'=z^post12, (x^post12 == 0 /\ x^0-x^post13 == 0 /\ -z^post13+z^0 == 0 /\ -y^post13+y^0 == 0 /\ y^post13-y^post12 == 0 /\ -z^post12+z^post13 == 0), cost: 1 New rule: l9 -> l6 : x^0'=0, y^0'=y^post13, z^0'=z^post13, (0 == 0 /\ x^0-x^post13 == 0 /\ -z^post13+z^0 == 0 /\ -y^post13+y^0 == 0), cost: 1 propagated equality x^post12 = 0 propagated equality y^post12 = y^post13 propagated equality z^post12 = z^post13 Propagated Equalities Original rule: l9 -> l6 : x^0'=0, y^0'=y^post13, z^0'=z^post13, (0 == 0 /\ x^0-x^post13 == 0 /\ -z^post13+z^0 == 0 /\ -y^post13+y^0 == 0), cost: 1 New rule: l9 -> l6 : x^0'=0, y^0'=y^0, z^0'=z^0, 0 == 0, cost: 1 propagated equality x^post13 = x^0 propagated equality z^post13 = z^0 propagated equality y^post13 = y^0 Simplified Guard Original rule: l9 -> l6 : x^0'=0, y^0'=y^0, z^0'=z^0, 0 == 0, cost: 1 New rule: l9 -> l6 : x^0'=0, y^0'=y^0, z^0'=z^0, T, cost: 1 Removed Trivial Updates Original rule: l9 -> l6 : x^0'=0, y^0'=y^0, z^0'=z^0, T, cost: 1 New rule: l9 -> l6 : x^0'=0, T, cost: 1 Propagated Equalities Original rule: l6 -> l6 : x^0'=x^post11, y^0'=y^post11, z^0'=z^post11, (-x^post11+x^post10 == 0 /\ -z^post11+z^post10 == 0 /\ -y^post11+y^post10 == 0 /\ -x^post10+x^0 == 0 /\ 1-y^0+z^0 <= 0 /\ -z^post10+z^0 == 0 /\ 1-y^0+y^post10 == 0), cost: 1 New rule: l6 -> l6 : x^0'=x^post10, y^0'=y^post10, z^0'=z^post10, (0 == 0 /\ -x^post10+x^0 == 0 /\ 1-y^0+z^0 <= 0 /\ -z^post10+z^0 == 0 /\ 1-y^0+y^post10 == 0), cost: 1 propagated equality x^post11 = x^post10 propagated equality z^post11 = z^post10 propagated equality y^post11 = y^post10 Propagated Equalities Original rule: l6 -> l6 : x^0'=x^post10, y^0'=y^post10, z^0'=z^post10, (0 == 0 /\ -x^post10+x^0 == 0 /\ 1-y^0+z^0 <= 0 /\ -z^post10+z^0 == 0 /\ 1-y^0+y^post10 == 0), cost: 1 New rule: l6 -> l6 : x^0'=x^0, y^0'=-1+y^0, z^0'=z^0, (0 == 0 /\ 1-y^0+z^0 <= 0), cost: 1 propagated equality x^post10 = x^0 propagated equality z^post10 = z^0 propagated equality y^post10 = -1+y^0 Simplified Guard Original rule: l6 -> l6 : x^0'=x^0, y^0'=-1+y^0, z^0'=z^0, (0 == 0 /\ 1-y^0+z^0 <= 0), cost: 1 New rule: l6 -> l6 : x^0'=x^0, y^0'=-1+y^0, z^0'=z^0, 1-y^0+z^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l6 -> l6 : x^0'=x^0, y^0'=-1+y^0, z^0'=z^0, 1-y^0+z^0 <= 0, cost: 1 New rule: l6 -> l6 : y^0'=-1+y^0, 1-y^0+z^0 <= 0, cost: 1 Propagated Equalities Original rule: l4 -> l4 : x^0'=x^post8, y^0'=y^post8, z^0'=z^post8, (z^post7-z^post8 == 0 /\ -y^post8+y^post7 == 0 /\ 1+x^0-z^0 <= 0 /\ -z^post7+z^0 == 0 /\ -x^post8+x^post7 == 0 /\ y^0-y^post7 == 0 /\ -1+x^post7-x^0 == 0), cost: 1 New rule: l4 -> l4 : x^0'=x^post7, y^0'=y^post7, z^0'=z^post7, (0 == 0 /\ 1+x^0-z^0 <= 0 /\ -z^post7+z^0 == 0 /\ y^0-y^post7 == 0 /\ -1+x^post7-x^0 == 0), cost: 1 propagated equality z^post8 = z^post7 propagated equality y^post8 = y^post7 propagated equality x^post8 = x^post7 Propagated Equalities Original rule: l4 -> l4 : x^0'=x^post7, y^0'=y^post7, z^0'=z^post7, (0 == 0 /\ 1+x^0-z^0 <= 0 /\ -z^post7+z^0 == 0 /\ y^0-y^post7 == 0 /\ -1+x^post7-x^0 == 0), cost: 1 New rule: l4 -> l4 : x^0'=1+x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ 1+x^0-z^0 <= 0), cost: 1 propagated equality z^post7 = z^0 propagated equality y^post7 = y^0 propagated equality x^post7 = 1+x^0 Simplified Guard Original rule: l4 -> l4 : x^0'=1+x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ 1+x^0-z^0 <= 0), cost: 1 New rule: l4 -> l4 : x^0'=1+x^0, y^0'=y^0, z^0'=z^0, 1+x^0-z^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l4 -> l4 : x^0'=1+x^0, y^0'=y^0, z^0'=z^0, 1+x^0-z^0 <= 0, cost: 1 New rule: l4 -> l4 : x^0'=1+x^0, 1+x^0-z^0 <= 0, cost: 1 Propagated Equalities Original rule: l2 -> l2 : x^0'=x^post5, y^0'=y^post5, z^0'=z^post5, (-z^post5+z^post4 == 0 /\ -z^post4+z^0 == 0 /\ 1-y^0 <= 0 /\ y^post4-y^post5 == 0 /\ x^0-x^post4 == 0 /\ 1+y^post4-y^0 == 0 /\ -x^post5+x^post4 == 0), cost: 1 New rule: l2 -> l2 : x^0'=x^post4, y^0'=y^post4, z^0'=z^post4, (0 == 0 /\ -z^post4+z^0 == 0 /\ 1-y^0 <= 0 /\ x^0-x^post4 == 0 /\ 1+y^post4-y^0 == 0), cost: 1 propagated equality z^post5 = z^post4 propagated equality y^post5 = y^post4 propagated equality x^post5 = x^post4 Propagated Equalities Original rule: l2 -> l2 : x^0'=x^post4, y^0'=y^post4, z^0'=z^post4, (0 == 0 /\ -z^post4+z^0 == 0 /\ 1-y^0 <= 0 /\ x^0-x^post4 == 0 /\ 1+y^post4-y^0 == 0), cost: 1 New rule: l2 -> l2 : x^0'=x^0, y^0'=-1+y^0, z^0'=z^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 propagated equality z^post4 = z^0 propagated equality x^post4 = x^0 propagated equality y^post4 = -1+y^0 Simplified Guard Original rule: l2 -> l2 : x^0'=x^0, y^0'=-1+y^0, z^0'=z^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 New rule: l2 -> l2 : x^0'=x^0, y^0'=-1+y^0, z^0'=z^0, 1-y^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l2 -> l2 : x^0'=x^0, y^0'=-1+y^0, z^0'=z^0, 1-y^0 <= 0, cost: 1 New rule: l2 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (-y^post1+y^0 == 0 /\ -y^post2+y^post1 == 0 /\ 1-x^0+x^post1 == 0 /\ -z^post1+z^0 == 0 /\ -z^post2+z^post1 == 0 /\ 1-x^0 <= 0 /\ -x^post2+x^post1 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^post1, y^0'=y^post1, z^0'=z^post1, (0 == 0 /\ -y^post1+y^0 == 0 /\ 1-x^0+x^post1 == 0 /\ -z^post1+z^0 == 0 /\ 1-x^0 <= 0), cost: 1 propagated equality y^post2 = y^post1 propagated equality z^post2 = z^post1 propagated equality x^post2 = x^post1 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post1, y^0'=y^post1, z^0'=z^post1, (0 == 0 /\ -y^post1+y^0 == 0 /\ 1-x^0+x^post1 == 0 /\ -z^post1+z^0 == 0 /\ 1-x^0 <= 0), cost: 1 New rule: l0 -> l0 : x^0'=-1+x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 propagated equality y^post1 = y^0 propagated equality x^post1 = -1+x^0 propagated equality z^post1 = z^0 Simplified Guard Original rule: l0 -> l0 : x^0'=-1+x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 New rule: l0 -> l0 : x^0'=-1+x^0, y^0'=y^0, z^0'=z^0, 1-x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l0 : x^0'=-1+x^0, y^0'=y^0, z^0'=z^0, 1-x^0 <= 0, cost: 1 New rule: l0 -> l0 : x^0'=-1+x^0, 1-x^0 <= 0, cost: 1 Step with 21 Trace 21[T] Blocked [{}, {}] Step with 20 Trace 21[T], 20[(y^0-z^0 <= 0)] Blocked [{}, {}, {}] Step with 19 Trace 21[T], 20[(y^0-z^0 <= 0)], 19[(-x^0+z^0 <= 0)] Blocked [{}, {}, {}, {}] Step with 18 Trace 21[T], 20[(y^0-z^0 <= 0)], 19[(-x^0+z^0 <= 0)], 18[(y^0 <= 0)] Blocked [{}, {}, {}, {}, {}] Backtrack Trace 21[T], 20[(y^0-z^0 <= 0)], 19[(-x^0+z^0 <= 0)] Blocked [{}, {}, {}, {18[T]}] Backtrack Trace 21[T], 20[(y^0-z^0 <= 0)] Blocked [{}, {}, {19[T]}] Step with 23 Trace 21[T], 20[(y^0-z^0 <= 0)], 23[(1+x^0-z^0 <= 0)] Blocked [{}, {}, {19[T]}, {}] Accelerate Start location: l9 Program variables: x^0 y^0 z^0 25: l0 -> l0 : x^0'=-1+x^0, 1-x^0 <= 0, cost: 1 18: l2 -> l0 : y^0 <= 0, cost: 1 24: l2 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 19: l4 -> l2 : -x^0+z^0 <= 0, cost: 1 23: l4 -> l4 : x^0'=1+x^0, 1+x^0-z^0 <= 0, cost: 1 26: l4 -> l4 : x^0'=n+x^0, (-n-x^0+z^0 >= 0 /\ -1+n >= 0), cost: 1 20: l6 -> l4 : y^0-z^0 <= 0, cost: 1 22: l6 -> l6 : y^0'=-1+y^0, 1-y^0+z^0 <= 0, cost: 1 21: l9 -> l6 : x^0'=0, T, cost: 1 Loop Acceleration Original rule: l4 -> l4 : x^0'=1+x^0, (1+x^0-z^0 <= 0), cost: 1 New rule: l4 -> l4 : x^0'=n+x^0, (-n-x^0+z^0 >= 0 /\ -1+n >= 0), cost: 1 -1-x^0+z^0 >= 0 [0]: montonic decrease yields -n-x^0+z^0 >= 0 -1-x^0+z^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1-x^0+z^0 >= 0) Replacement map: {-1-x^0+z^0 >= 0 -> -n-x^0+z^0 >= 0} Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}] Step with 19 Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {}] Step with 18 Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 18[(y^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {}, {}] Step with 25 Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 18[(y^0 <= 0)], 25[(1-x^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {}, {}, {}] Accelerate Start location: l9 Program variables: x^0 y^0 z^0 25: l0 -> l0 : x^0'=-1+x^0, 1-x^0 <= 0, cost: 1 27: l0 -> l0 : x^0'=x^0-n2, (x^0-n2 >= 0 /\ -1+n2 >= 0), cost: 1 18: l2 -> l0 : y^0 <= 0, cost: 1 24: l2 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 19: l4 -> l2 : -x^0+z^0 <= 0, cost: 1 23: l4 -> l4 : x^0'=1+x^0, 1+x^0-z^0 <= 0, cost: 1 26: l4 -> l4 : x^0'=n+x^0, (-n-x^0+z^0 >= 0 /\ -1+n >= 0), cost: 1 20: l6 -> l4 : y^0-z^0 <= 0, cost: 1 22: l6 -> l6 : y^0'=-1+y^0, 1-y^0+z^0 <= 0, cost: 1 21: l9 -> l6 : x^0'=0, T, cost: 1 Loop Acceleration Original rule: l0 -> l0 : x^0'=-1+x^0, (1-x^0 <= 0), cost: 1 New rule: l0 -> l0 : x^0'=x^0-n2, (x^0-n2 >= 0 /\ -1+n2 >= 0), cost: 1 -1+x^0 >= 0 [0]: montonic decrease yields x^0-n2 >= 0 -1+x^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+x^0 >= 0) Replacement map: {-1+x^0 >= 0 -> x^0-n2 >= 0} Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 18[(y^0 <= 0)], 27[(x^0-n2 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {}, {}, {25[T], 27[T]}] Backtrack Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 18[(y^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {}, {27[T]}] Step with 25 Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 18[(y^0 <= 0)], 25[(1-x^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {}, {27[T]}, {}] Covered Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 18[(y^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {}, {25[T], 27[T]}] Backtrack Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T]}] Step with 24 Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 24[(1-y^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T]}, {}] Accelerate Start location: l9 Program variables: x^0 y^0 z^0 25: l0 -> l0 : x^0'=-1+x^0, 1-x^0 <= 0, cost: 1 27: l0 -> l0 : x^0'=x^0-n2, (x^0-n2 >= 0 /\ -1+n2 >= 0), cost: 1 18: l2 -> l0 : y^0 <= 0, cost: 1 24: l2 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 28: l2 -> l2 : y^0'=y^0-n3, (y^0-n3 >= 0 /\ -1+n3 >= 0), cost: 1 19: l4 -> l2 : -x^0+z^0 <= 0, cost: 1 23: l4 -> l4 : x^0'=1+x^0, 1+x^0-z^0 <= 0, cost: 1 26: l4 -> l4 : x^0'=n+x^0, (-n-x^0+z^0 >= 0 /\ -1+n >= 0), cost: 1 20: l6 -> l4 : y^0-z^0 <= 0, cost: 1 22: l6 -> l6 : y^0'=-1+y^0, 1-y^0+z^0 <= 0, cost: 1 21: l9 -> l6 : x^0'=0, T, cost: 1 Loop Acceleration Original rule: l2 -> l2 : y^0'=-1+y^0, (1-y^0 <= 0), cost: 1 New rule: l2 -> l2 : y^0'=y^0-n3, (y^0-n3 >= 0 /\ -1+n3 >= 0), cost: 1 -1+y^0 >= 0 [0]: montonic decrease yields y^0-n3 >= 0 -1+y^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+y^0 >= 0) Replacement map: {-1+y^0 >= 0 -> y^0-n3 >= 0} Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T]}, {24[T], 28[T]}] Step with 18 Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T]}, {24[T], 28[T]}, {}] Step with 25 Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)], 25[(1-x^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T]}, {24[T], 28[T]}, {}, {}] Covered Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T]}, {24[T], 28[T]}, {25[T]}] Step with 27 Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)], 27[(x^0-n2 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T]}, {24[T], 28[T]}, {25[T]}, {27[T]}] Step with 25 Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)], 27[(x^0-n2 >= 0 /\ -1+n2 >= 0)], 25[(1-x^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T]}, {24[T], 28[T]}, {25[T]}, {27[T]}, {}] Covered Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)], 27[(x^0-n2 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T]}, {24[T], 28[T]}, {25[T]}, {25[T], 27[T]}] Backtrack Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T]}, {24[T], 28[T]}, {25[T], 27[T]}] Backtrack Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T]}, {18[T], 24[T], 28[T]}] Backtrack Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T], 28[T]}] Step with 24 Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 24[(1-y^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T], 28[T]}, {}] Covered Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)] Blocked [{}, {}, {19[T]}, {23[T], 26[T]}, {18[T], 24[T], 28[T]}] Backtrack Trace 21[T], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)] Blocked [{}, {}, {19[T]}, {19[T], 23[T], 26[T]}] Backtrack Trace 21[T], 20[(y^0-z^0 <= 0)] Blocked [{}, {}, {19[T], 26[T]}] Step with 23 Trace 21[T], 20[(y^0-z^0 <= 0)], 23[(1+x^0-z^0 <= 0)] Blocked [{}, {}, {19[T], 26[T]}, {}] Covered Trace 21[T], 20[(y^0-z^0 <= 0)] Blocked [{}, {}, {19[T], 23[T], 26[T]}] Backtrack Trace 21[T] Blocked [{}, {20[T]}] Step with 22 Trace 21[T], 22[(1-y^0+z^0 <= 0)] Blocked [{}, {20[T]}, {}] Accelerate Start location: l9 Program variables: x^0 y^0 z^0 25: l0 -> l0 : x^0'=-1+x^0, 1-x^0 <= 0, cost: 1 27: l0 -> l0 : x^0'=x^0-n2, (x^0-n2 >= 0 /\ -1+n2 >= 0), cost: 1 18: l2 -> l0 : y^0 <= 0, cost: 1 24: l2 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 28: l2 -> l2 : y^0'=y^0-n3, (y^0-n3 >= 0 /\ -1+n3 >= 0), cost: 1 19: l4 -> l2 : -x^0+z^0 <= 0, cost: 1 23: l4 -> l4 : x^0'=1+x^0, 1+x^0-z^0 <= 0, cost: 1 26: l4 -> l4 : x^0'=n+x^0, (-n-x^0+z^0 >= 0 /\ -1+n >= 0), cost: 1 20: l6 -> l4 : y^0-z^0 <= 0, cost: 1 22: l6 -> l6 : y^0'=-1+y^0, 1-y^0+z^0 <= 0, cost: 1 29: l6 -> l6 : y^0'=y^0-n4, (-1+n4 >= 0 /\ y^0-n4-z^0 >= 0), cost: 1 21: l9 -> l6 : x^0'=0, T, cost: 1 Loop Acceleration Original rule: l6 -> l6 : y^0'=-1+y^0, (1-y^0+z^0 <= 0), cost: 1 New rule: l6 -> l6 : y^0'=y^0-n4, (-1+n4 >= 0 /\ y^0-n4-z^0 >= 0), cost: 1 -1+y^0-z^0 >= 0 [0]: montonic decrease yields y^0-n4-z^0 >= 0 -1+y^0-z^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+y^0-z^0 >= 0) Replacement map: {-1+y^0-z^0 >= 0 -> y^0-n4-z^0 >= 0} Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}] Step with 20 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {}] Step with 23 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 23[(1+x^0-z^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {}, {}] Covered Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}] Step with 26 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}] Step with 19 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {}] Step with 24 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 24[(1-y^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {}, {}] Covered Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}] Step with 28 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}, {28[T]}] Step with 18 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}, {28[T]}, {}] Step with 25 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)], 25[(1-x^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}, {28[T]}, {}, {}] Covered Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}, {28[T]}, {25[T]}] Step with 27 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)], 27[(x^0-n2 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}, {28[T]}, {25[T]}, {27[T]}] Step with 25 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)], 27[(x^0-n2 >= 0 /\ -1+n2 >= 0)], 25[(1-x^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}, {28[T]}, {25[T]}, {27[T]}, {}] Covered Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)], 27[(x^0-n2 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}, {28[T]}, {25[T]}, {25[T], 27[T]}] Backtrack Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 18[(y^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}, {28[T]}, {25[T], 27[T]}] Backtrack Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}, {18[T], 28[T]}] Step with 24 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)], 24[(1-y^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}, {18[T], 28[T]}, {}] Covered Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)], 28[(y^0-n3 >= 0 /\ -1+n3 >= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T]}, {18[T], 24[T], 28[T]}] Backtrack Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 19[(-x^0+z^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {26[T]}, {24[T], 28[T]}] Backtrack Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {19[T], 26[T]}] Step with 23 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)], 23[(1+x^0-z^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {19[T], 26[T]}, {}] Covered Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 26[(-n-x^0+z^0 >= 0 /\ -1+n >= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T]}, {19[T], 23[T], 26[T]}] Backtrack Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T], 26[T]}] Step with 19 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 19[(-x^0+z^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T], 26[T]}, {}] Step with 18 Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 19[(-x^0+z^0 <= 0)], 18[(y^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T], 26[T]}, {24[T], 28[T]}, {}] Backtrack Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)], 19[(-x^0+z^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {23[T], 26[T]}, {18[T], 24[T], 28[T]}] Backtrack Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)], 20[(y^0-z^0 <= 0)] Blocked [{}, {20[T]}, {22[T], 29[T]}, {19[T], 23[T], 26[T]}] Backtrack Trace 21[T], 29[(-1+n4 >= 0 /\ y^0-n4-z^0 >= 0)] Blocked [{}, {20[T]}, {20[T], 22[T], 29[T]}] Backtrack Trace 21[T] Blocked [{}, {20[T], 29[T]}] Step with 22 Trace 21[T], 22[(1-y^0+z^0 <= 0)] Blocked [{}, {20[T], 29[T]}, {}] Covered Trace 21[T] Blocked [{}, {20[T], 22[T], 29[T]}] Backtrack Trace Blocked [{21[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b