NO Initial ITS Start location: l5 Program variables: x^0 y^0 0: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, (y^post1-x^0 == 0 /\ 1-x^0 <= 0 /\ -x^post1+x^0 == 0), cost: 1 1: l1 -> l2 : x^0'=x^post2, y^0'=y^post2, (x^0-x^post2 == 0 /\ -y^post2+y^0 == 0 /\ y^0 <= 0), cost: 1 2: l1 -> l3 : x^0'=x^post3, y^0'=y^post3, (1-y^0 <= 0 /\ -x^post3+x^0 == 0 /\ 1-y^0+y^post3 == 0), cost: 1 4: l2 -> l0 : x^0'=x^post5, y^0'=y^post5, (x^0-x^post5 == 0 /\ -1+y^post5-y^0 == 0), cost: 1 5: l2 -> l0 : x^0'=x^post6, y^0'=y^post6, (1+x^post6-x^0 == 0 /\ -1-y^0+y^post6 == 0), cost: 1 3: l3 -> l1 : x^0'=x^post4, y^0'=y^post4, (-x^post4+x^0 == 0 /\ -y^post4+y^0 == 0), cost: 1 6: l4 -> l0 : x^0'=x^post7, y^0'=y^post7, (-x^post7+x^0 == 0 /\ -y^post7+y^0 == 0), cost: 1 7: l5 -> l4 : x^0'=x^post8, y^0'=y^post8, (-x^post8+x^0 == 0 /\ y^0-y^post8 == 0), cost: 1 Chained Linear Paths Start location: l5 Program variables: x^0 y^0 0: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, (y^post1-x^0 == 0 /\ 1-x^0 <= 0 /\ -x^post1+x^0 == 0), cost: 1 1: l1 -> l2 : x^0'=x^post2, y^0'=y^post2, (x^0-x^post2 == 0 /\ -y^post2+y^0 == 0 /\ y^0 <= 0), cost: 1 9: l1 -> l1 : x^0'=x^post4, y^0'=y^post4, (-y^post4+y^post3 == 0 /\ 1-y^0 <= 0 /\ -x^post4+x^post3 == 0 /\ -x^post3+x^0 == 0 /\ 1-y^0+y^post3 == 0), cost: 1 4: l2 -> l0 : x^0'=x^post5, y^0'=y^post5, (x^0-x^post5 == 0 /\ -1+y^post5-y^0 == 0), cost: 1 5: l2 -> l0 : x^0'=x^post6, y^0'=y^post6, (1+x^post6-x^0 == 0 /\ -1-y^0+y^post6 == 0), cost: 1 8: l5 -> l0 : x^0'=x^post7, y^0'=y^post7, (-x^post7+x^post8 == 0 /\ -y^post7+y^post8 == 0 /\ -x^post8+x^0 == 0 /\ y^0-y^post8 == 0), cost: 1 Eliminating location l4 by chaining: Applied chaining First rule: l5 -> l4 : x^0'=x^post8, y^0'=y^post8, (-x^post8+x^0 == 0 /\ y^0-y^post8 == 0), cost: 1 Second rule: l4 -> l0 : x^0'=x^post7, y^0'=y^post7, (-x^post7+x^0 == 0 /\ -y^post7+y^0 == 0), cost: 1 New rule: l5 -> l0 : x^0'=x^post7, y^0'=y^post7, (-x^post7+x^post8 == 0 /\ -y^post7+y^post8 == 0 /\ -x^post8+x^0 == 0 /\ y^0-y^post8 == 0), cost: 1 Applied deletion Removed the following rules: 6 7 Eliminating location l3 by chaining: Applied chaining First rule: l1 -> l3 : x^0'=x^post3, y^0'=y^post3, (1-y^0 <= 0 /\ -x^post3+x^0 == 0 /\ 1-y^0+y^post3 == 0), cost: 1 Second rule: l3 -> l1 : x^0'=x^post4, y^0'=y^post4, (-x^post4+x^0 == 0 /\ -y^post4+y^0 == 0), cost: 1 New rule: l1 -> l1 : x^0'=x^post4, y^0'=y^post4, (-y^post4+y^post3 == 0 /\ 1-y^0 <= 0 /\ -x^post4+x^post3 == 0 /\ -x^post3+x^0 == 0 /\ 1-y^0+y^post3 == 0), cost: 1 Applied deletion Removed the following rules: 2 3 Simplified Transitions Start location: l5 Program variables: x^0 y^0 10: l0 -> l1 : y^0'=x^0, 1-x^0 <= 0, cost: 1 11: l1 -> l2 : y^0 <= 0, cost: 1 15: l1 -> l1 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 12: l2 -> l0 : y^0'=1+y^0, T, cost: 1 13: l2 -> l0 : x^0'=-1+x^0, y^0'=1+y^0, T, cost: 1 14: l5 -> l0 : T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, (y^post1-x^0 == 0 /\ 1-x^0 <= 0 /\ -x^post1+x^0 == 0), cost: 1 New rule: l0 -> l1 : x^0'=x^0, y^0'=x^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 propagated equality y^post1 = x^0 propagated equality x^post1 = x^0 Simplified Guard Original rule: l0 -> l1 : x^0'=x^0, y^0'=x^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 New rule: l0 -> l1 : x^0'=x^0, y^0'=x^0, 1-x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : x^0'=x^0, y^0'=x^0, 1-x^0 <= 0, cost: 1 New rule: l0 -> l1 : y^0'=x^0, 1-x^0 <= 0, cost: 1 Propagated Equalities Original rule: l1 -> l2 : x^0'=x^post2, y^0'=y^post2, (x^0-x^post2 == 0 /\ -y^post2+y^0 == 0 /\ y^0 <= 0), cost: 1 New rule: l1 -> l2 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ y^0 <= 0), cost: 1 propagated equality x^post2 = x^0 propagated equality y^post2 = y^0 Simplified Guard Original rule: l1 -> l2 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ y^0 <= 0), cost: 1 New rule: l1 -> l2 : x^0'=x^0, y^0'=y^0, y^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l1 -> l2 : x^0'=x^0, y^0'=y^0, y^0 <= 0, cost: 1 New rule: l1 -> l2 : y^0 <= 0, cost: 1 Propagated Equalities Original rule: l2 -> l0 : x^0'=x^post5, y^0'=y^post5, (x^0-x^post5 == 0 /\ -1+y^post5-y^0 == 0), cost: 1 New rule: l2 -> l0 : x^0'=x^0, y^0'=1+y^0, 0 == 0, cost: 1 propagated equality x^post5 = x^0 propagated equality y^post5 = 1+y^0 Simplified Guard Original rule: l2 -> l0 : x^0'=x^0, y^0'=1+y^0, 0 == 0, cost: 1 New rule: l2 -> l0 : x^0'=x^0, y^0'=1+y^0, T, cost: 1 Removed Trivial Updates Original rule: l2 -> l0 : x^0'=x^0, y^0'=1+y^0, T, cost: 1 New rule: l2 -> l0 : y^0'=1+y^0, T, cost: 1 Propagated Equalities Original rule: l2 -> l0 : x^0'=x^post6, y^0'=y^post6, (1+x^post6-x^0 == 0 /\ -1-y^0+y^post6 == 0), cost: 1 New rule: l2 -> l0 : x^0'=-1+x^0, y^0'=1+y^0, 0 == 0, cost: 1 propagated equality x^post6 = -1+x^0 propagated equality y^post6 = 1+y^0 Simplified Guard Original rule: l2 -> l0 : x^0'=-1+x^0, y^0'=1+y^0, 0 == 0, cost: 1 New rule: l2 -> l0 : x^0'=-1+x^0, y^0'=1+y^0, T, cost: 1 Propagated Equalities Original rule: l5 -> l0 : x^0'=x^post7, y^0'=y^post7, (-x^post7+x^post8 == 0 /\ -y^post7+y^post8 == 0 /\ -x^post8+x^0 == 0 /\ y^0-y^post8 == 0), cost: 1 New rule: l5 -> l0 : x^0'=x^post8, y^0'=y^post8, (0 == 0 /\ -x^post8+x^0 == 0 /\ y^0-y^post8 == 0), cost: 1 propagated equality x^post7 = x^post8 propagated equality y^post7 = y^post8 Propagated Equalities Original rule: l5 -> l0 : x^0'=x^post8, y^0'=y^post8, (0 == 0 /\ -x^post8+x^0 == 0 /\ y^0-y^post8 == 0), cost: 1 New rule: l5 -> l0 : x^0'=x^0, y^0'=y^0, 0 == 0, cost: 1 propagated equality x^post8 = x^0 propagated equality y^post8 = y^0 Simplified Guard Original rule: l5 -> l0 : x^0'=x^0, y^0'=y^0, 0 == 0, cost: 1 New rule: l5 -> l0 : x^0'=x^0, y^0'=y^0, T, cost: 1 Removed Trivial Updates Original rule: l5 -> l0 : x^0'=x^0, y^0'=y^0, T, cost: 1 New rule: l5 -> l0 : T, cost: 1 Propagated Equalities Original rule: l1 -> l1 : x^0'=x^post4, y^0'=y^post4, (-y^post4+y^post3 == 0 /\ 1-y^0 <= 0 /\ -x^post4+x^post3 == 0 /\ -x^post3+x^0 == 0 /\ 1-y^0+y^post3 == 0), cost: 1 New rule: l1 -> l1 : x^0'=x^post3, y^0'=y^post3, (0 == 0 /\ 1-y^0 <= 0 /\ -x^post3+x^0 == 0 /\ 1-y^0+y^post3 == 0), cost: 1 propagated equality y^post4 = y^post3 propagated equality x^post4 = x^post3 Propagated Equalities Original rule: l1 -> l1 : x^0'=x^post3, y^0'=y^post3, (0 == 0 /\ 1-y^0 <= 0 /\ -x^post3+x^0 == 0 /\ 1-y^0+y^post3 == 0), cost: 1 New rule: l1 -> l1 : x^0'=x^0, y^0'=-1+y^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 propagated equality x^post3 = x^0 propagated equality y^post3 = -1+y^0 Simplified Guard Original rule: l1 -> l1 : x^0'=x^0, y^0'=-1+y^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 New rule: l1 -> l1 : x^0'=x^0, y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l1 -> l1 : x^0'=x^0, y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 New rule: l1 -> l1 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 Step with 14 Trace 14[T] Blocked [{}, {}] Step with 10 Trace 14[T], 10[(1-x^0 <= 0)] Blocked [{}, {}, {}] Step with 15 Trace 14[T], 10[(1-x^0 <= 0)], 15[(1-y^0 <= 0)] Blocked [{}, {}, {11[T]}, {}] Accelerate Start location: l5 Program variables: x^0 y^0 10: l0 -> l1 : y^0'=x^0, 1-x^0 <= 0, cost: 1 11: l1 -> l2 : y^0 <= 0, cost: 1 15: l1 -> l1 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 16: l1 -> l1 : y^0'=-n+y^0, (-1+n >= 0 /\ -n+y^0 >= 0), cost: 1 12: l2 -> l0 : y^0'=1+y^0, T, cost: 1 13: l2 -> l0 : x^0'=-1+x^0, y^0'=1+y^0, T, cost: 1 14: l5 -> l0 : T, cost: 1 Loop Acceleration Original rule: l1 -> l1 : y^0'=-1+y^0, (1-y^0 <= 0), cost: 1 New rule: l1 -> l1 : y^0'=-n+y^0, (-1+n >= 0 /\ -n+y^0 >= 0), cost: 1 -1+y^0 >= 0 [0]: montonic decrease yields -n+y^0 >= 0 -1+y^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+y^0 >= 0) Replacement map: {-1+y^0 >= 0 -> -n+y^0 >= 0} Trace 14[T], 10[(1-x^0 <= 0)], 16[(-1+n >= 0 /\ -n+y^0 >= 0)] Blocked [{}, {}, {11[T]}, {15[T], 16[T]}] Step with 11 Trace 14[T], 10[(1-x^0 <= 0)], 16[(-1+n >= 0 /\ -n+y^0 >= 0)], 11[(y^0 <= 0)] Blocked [{}, {}, {11[T]}, {15[T], 16[T]}, {}] Step with 12 Trace 14[T], 10[(1-x^0 <= 0)], 16[(-1+n >= 0 /\ -n+y^0 >= 0)], 11[(y^0 <= 0)], 12[T] Blocked [{}, {}, {11[T]}, {15[T], 16[T]}, {}, {}] Nonterm Start location: l5 Program variables: x^0 y^0 10: l0 -> l1 : y^0'=x^0, 1-x^0 <= 0, cost: 1 17: l0 -> LoAT_sink : (-1+n2 >= 0 /\ -1+x^0 >= 0), cost: NONTERM 11: l1 -> l2 : y^0 <= 0, cost: 1 15: l1 -> l1 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 16: l1 -> l1 : y^0'=-n+y^0, (-1+n >= 0 /\ -n+y^0 >= 0), cost: 1 12: l2 -> l0 : y^0'=1+y^0, T, cost: 1 13: l2 -> l0 : x^0'=-1+x^0, y^0'=1+y^0, T, cost: 1 14: l5 -> l0 : T, cost: 1 Certificate of Non-Termination Original rule: l0 -> l0 : y^0'=1, (1-x^0 <= 0 /\ -1+x^0 >= 0), cost: 1 New rule: l0 -> LoAT_sink : (-1+n2 >= 0 /\ -1+x^0 >= 0), cost: NONTERM -1+x^0 >= 0 [0]: monotonic increase yields -1+x^0 >= 0 Replacement map: {-1+x^0 >= 0 -> -1+x^0 >= 0} Step with 17 Trace 14[T], 17[(-1+n2 >= 0 /\ -1+x^0 >= 0)] Blocked [{}, {}, {17[T]}] Refute Counterexample [ x^0=1 y^0=0 ] 14 [ x^0=1 y^0=0 ] 17 NO Build SHA: a05f16bf13df659c382799650051f91bf6828c7b