unknown Initial ITS Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 0: l0 -> l1 : oldx0^0'=oldx0^post1, oldx1^0'=oldx1^post1, oldx2^0'=oldx2^post1, oldx3^0'=oldx3^post1, x0^0'=x0^post1, x1^0'=x1^post1, (0 == 0 /\ -1+x0^post1-oldx0^post1 == 0 /\ oldx1^post1-x1^0 == 0 /\ -oldx3^post1+oldx3^0 == 0 /\ oldx0^post1-x0^0 == 0 /\ x1^post1-oldx2^post1 == 0), cost: 1 5: l1 -> l4 : oldx0^0'=oldx0^post6, oldx1^0'=oldx1^post6, oldx2^0'=oldx2^post6, oldx3^0'=oldx3^post6, x0^0'=x0^post6, x1^0'=x1^post6, (0 == 0 /\ 10-oldx0^post6 <= 0 /\ oldx0^post6-x0^0 == 0 /\ oldx1^post6-x1^0 == 0 /\ x1^post6-oldx2^post6 == 0 /\ x0^post6-oldx0^post6 == 0 /\ oldx3^0-oldx3^post6 == 0), cost: 1 6: l1 -> l3 : oldx0^0'=oldx0^post7, oldx1^0'=oldx1^post7, oldx2^0'=oldx2^post7, oldx3^0'=oldx3^post7, x0^0'=x0^post7, x1^0'=x1^post7, (x0^post7-oldx0^post7 == 0 /\ -3+x1^post7 == 0 /\ oldx0^post7-x0^0 == 0 /\ oldx2^0-oldx2^post7 == 0 /\ -9+oldx0^post7 <= 0 /\ oldx3^0-oldx3^post7 == 0 /\ oldx1^post7-x1^0 == 0), cost: 1 1: l2 -> l3 : oldx0^0'=oldx0^post2, oldx1^0'=oldx1^post2, oldx2^0'=oldx2^post2, oldx3^0'=oldx3^post2, x0^0'=x0^post2, x1^0'=x1^post2, (oldx0^post2-x0^0 == 0 /\ -oldx0^post2+x0^post2 == 0 /\ -1+x1^post2-oldx1^post2 == 0 /\ oldx2^0-oldx2^post2 == 0 /\ -x1^0+oldx1^post2 == 0 /\ -oldx3^post2+oldx3^0 == 0), cost: 1 3: l3 -> l0 : oldx0^0'=oldx0^post4, oldx1^0'=oldx1^post4, oldx2^0'=oldx2^post4, oldx3^0'=oldx3^post4, x0^0'=x0^post4, x1^0'=x1^post4, (-oldx3^post4+oldx3^0 == 0 /\ oldx1^post4-x1^0 == 0 /\ -oldx1^post4+x1^post4 == 0 /\ oldx0^post4-x0^0 == 0 /\ oldx2^0-oldx2^post4 == 0 /\ -oldx0^post4+x0^post4 == 0 /\ 12-oldx1^post4 <= 0), cost: 1 4: l3 -> l2 : oldx0^0'=oldx0^post5, oldx1^0'=oldx1^post5, oldx2^0'=oldx2^post5, oldx3^0'=oldx3^post5, x0^0'=x0^post5, x1^0'=x1^post5, (-11+oldx1^post5 <= 0 /\ oldx2^0-oldx2^post5 == 0 /\ -oldx3^post5+oldx3^0 == 0 /\ -oldx1^post5+x1^post5 == 0 /\ -oldx0^post5+x0^post5 == 0 /\ oldx0^post5-x0^0 == 0 /\ oldx1^post5-x1^0 == 0), cost: 1 2: l4 -> l5 : oldx0^0'=oldx0^post3, oldx1^0'=oldx1^post3, oldx2^0'=oldx2^post3, oldx3^0'=oldx3^post3, x0^0'=x0^post3, x1^0'=x1^post3, (0 == 0 /\ -oldx3^post3+x1^post3 == 0 /\ oldx0^post3-x0^0 == 0 /\ -x1^0+oldx1^post3 == 0 /\ -oldx2^post3+x0^post3 == 0), cost: 1 7: l6 -> l1 : oldx0^0'=oldx0^post8, oldx1^0'=oldx1^post8, oldx2^0'=oldx2^post8, oldx3^0'=oldx3^post8, x0^0'=x0^post8, x1^0'=x1^post8, (0 == 0 /\ x0^post8 == 0 /\ oldx1^post8-x1^0 == 0 /\ -oldx3^post8+oldx3^0 == 0 /\ oldx0^post8-x0^0 == 0 /\ x1^post8-oldx2^post8 == 0), cost: 1 8: l7 -> l6 : oldx0^0'=oldx0^post9, oldx1^0'=oldx1^post9, oldx2^0'=oldx2^post9, oldx3^0'=oldx3^post9, x0^0'=x0^post9, x1^0'=x1^post9, (0 == 0 /\ oldx0^post9-x0^0 == 0 /\ oldx1^post9-x1^0 == 0 /\ x0^post9-oldx2^post9 == 0 /\ x1^post9-oldx3^post9 == 0), cost: 1 9: l7 -> l5 : oldx0^0'=oldx0^post10, oldx1^0'=oldx1^post10, oldx2^0'=oldx2^post10, oldx3^0'=oldx3^post10, x0^0'=x0^post10, x1^0'=x1^post10, (oldx0^0-oldx0^post10 == 0 /\ -oldx1^post10+oldx1^0 == 0 /\ -x1^post10+x1^0 == 0 /\ -oldx3^post10+oldx3^0 == 0 /\ oldx2^0-oldx2^post10 == 0 /\ -x0^post10+x0^0 == 0), cost: 1 10: l7 -> l0 : oldx0^0'=oldx0^post11, oldx1^0'=oldx1^post11, oldx2^0'=oldx2^post11, oldx3^0'=oldx3^post11, x0^0'=x0^post11, x1^0'=x1^post11, (-x1^post11+x1^0 == 0 /\ oldx1^0-oldx1^post11 == 0 /\ oldx2^0-oldx2^post11 == 0 /\ -x0^post11+x0^0 == 0 /\ -oldx3^post11+oldx3^0 == 0 /\ oldx0^0-oldx0^post11 == 0), cost: 1 11: l7 -> l2 : oldx0^0'=oldx0^post12, oldx1^0'=oldx1^post12, oldx2^0'=oldx2^post12, oldx3^0'=oldx3^post12, x0^0'=x0^post12, x1^0'=x1^post12, (-x0^post12+x0^0 == 0 /\ oldx1^0-oldx1^post12 == 0 /\ -x1^post12+x1^0 == 0 /\ oldx2^0-oldx2^post12 == 0 /\ -oldx3^post12+oldx3^0 == 0 /\ oldx0^0-oldx0^post12 == 0), cost: 1 12: l7 -> l4 : oldx0^0'=oldx0^post13, oldx1^0'=oldx1^post13, oldx2^0'=oldx2^post13, oldx3^0'=oldx3^post13, x0^0'=x0^post13, x1^0'=x1^post13, (oldx2^0-oldx2^post13 == 0 /\ -x0^post13+x0^0 == 0 /\ -x1^post13+x1^0 == 0 /\ -oldx3^post13+oldx3^0 == 0 /\ oldx0^0-oldx0^post13 == 0 /\ oldx1^0-oldx1^post13 == 0), cost: 1 13: l7 -> l3 : oldx0^0'=oldx0^post14, oldx1^0'=oldx1^post14, oldx2^0'=oldx2^post14, oldx3^0'=oldx3^post14, x0^0'=x0^post14, x1^0'=x1^post14, (-oldx1^post14+oldx1^0 == 0 /\ -oldx3^post14+oldx3^0 == 0 /\ -x0^post14+x0^0 == 0 /\ x1^0-x1^post14 == 0 /\ oldx2^0-oldx2^post14 == 0 /\ -oldx0^post14+oldx0^0 == 0), cost: 1 14: l7 -> l1 : oldx0^0'=oldx0^post15, oldx1^0'=oldx1^post15, oldx2^0'=oldx2^post15, oldx3^0'=oldx3^post15, x0^0'=x0^post15, x1^0'=x1^post15, (-oldx1^post15+oldx1^0 == 0 /\ x1^0-x1^post15 == 0 /\ oldx2^0-oldx2^post15 == 0 /\ -oldx3^post15+oldx3^0 == 0 /\ -x0^post15+x0^0 == 0 /\ -oldx0^post15+oldx0^0 == 0), cost: 1 15: l7 -> l6 : oldx0^0'=oldx0^post16, oldx1^0'=oldx1^post16, oldx2^0'=oldx2^post16, oldx3^0'=oldx3^post16, x0^0'=x0^post16, x1^0'=x1^post16, (oldx2^0-oldx2^post16 == 0 /\ oldx0^0-oldx0^post16 == 0 /\ -x0^post16+x0^0 == 0 /\ oldx3^0-oldx3^post16 == 0 /\ -oldx1^post16+oldx1^0 == 0 /\ -x1^post16+x1^0 == 0), cost: 1 16: l8 -> l7 : oldx0^0'=oldx0^post17, oldx1^0'=oldx1^post17, oldx2^0'=oldx2^post17, oldx3^0'=oldx3^post17, x0^0'=x0^post17, x1^0'=x1^post17, (oldx2^0-oldx2^post17 == 0 /\ -oldx1^post17+oldx1^0 == 0 /\ -x0^post17+x0^0 == 0 /\ oldx0^0-oldx0^post17 == 0 /\ oldx3^0-oldx3^post17 == 0 /\ -x1^post17+x1^0 == 0), cost: 1 Simplified Transitions Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : oldx0^0'=oldx0^post1, oldx1^0'=oldx1^post1, oldx2^0'=oldx2^post1, oldx3^0'=oldx3^post1, x0^0'=x0^post1, x1^0'=x1^post1, (0 == 0 /\ -1+x0^post1-oldx0^post1 == 0 /\ oldx1^post1-x1^0 == 0 /\ -oldx3^post1+oldx3^0 == 0 /\ oldx0^post1-x0^0 == 0 /\ x1^post1-oldx2^post1 == 0), cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, oldx3^0'=oldx3^0, x0^0'=1+x0^0, x1^0'=x1^post1, 0 == 0, cost: 1 propagated equality oldx0^post1 = -1+x0^post1 propagated equality oldx1^post1 = x1^0 propagated equality oldx3^post1 = oldx3^0 propagated equality x0^post1 = 1+x0^0 propagated equality oldx2^post1 = x1^post1 Simplified Guard Original rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, oldx3^0'=oldx3^0, x0^0'=1+x0^0, x1^0'=x1^post1, 0 == 0, cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, oldx3^0'=oldx3^0, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, oldx3^0'=oldx3^0, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 Propagated Equalities Original rule: l2 -> l3 : oldx0^0'=oldx0^post2, oldx1^0'=oldx1^post2, oldx2^0'=oldx2^post2, oldx3^0'=oldx3^post2, x0^0'=x0^post2, x1^0'=x1^post2, (oldx0^post2-x0^0 == 0 /\ -oldx0^post2+x0^post2 == 0 /\ -1+x1^post2-oldx1^post2 == 0 /\ oldx2^0-oldx2^post2 == 0 /\ -x1^0+oldx1^post2 == 0 /\ -oldx3^post2+oldx3^0 == 0), cost: 1 New rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=1+x1^0, 0 == 0, cost: 1 propagated equality oldx0^post2 = x0^0 propagated equality x0^post2 = x0^0 propagated equality oldx1^post2 = -1+x1^post2 propagated equality oldx2^post2 = oldx2^0 propagated equality x1^post2 = 1+x1^0 propagated equality oldx3^post2 = oldx3^0 Simplified Guard Original rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=1+x1^0, 0 == 0, cost: 1 New rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=1+x1^0, T, cost: 1 Removed Trivial Updates Original rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=1+x1^0, T, cost: 1 New rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 Propagated Equalities Original rule: l4 -> l5 : oldx0^0'=oldx0^post3, oldx1^0'=oldx1^post3, oldx2^0'=oldx2^post3, oldx3^0'=oldx3^post3, x0^0'=x0^post3, x1^0'=x1^post3, (0 == 0 /\ -oldx3^post3+x1^post3 == 0 /\ oldx0^post3-x0^0 == 0 /\ -x1^0+oldx1^post3 == 0 /\ -oldx2^post3+x0^post3 == 0), cost: 1 New rule: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, 0 == 0, cost: 1 propagated equality oldx3^post3 = x1^post3 propagated equality oldx0^post3 = x0^0 propagated equality oldx1^post3 = x1^0 propagated equality oldx2^post3 = x0^post3 Simplified Guard Original rule: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, 0 == 0, cost: 1 New rule: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 Propagated Equalities Original rule: l3 -> l0 : oldx0^0'=oldx0^post4, oldx1^0'=oldx1^post4, oldx2^0'=oldx2^post4, oldx3^0'=oldx3^post4, x0^0'=x0^post4, x1^0'=x1^post4, (-oldx3^post4+oldx3^0 == 0 /\ oldx1^post4-x1^0 == 0 /\ -oldx1^post4+x1^post4 == 0 /\ oldx0^post4-x0^0 == 0 /\ oldx2^0-oldx2^post4 == 0 /\ -oldx0^post4+x0^post4 == 0 /\ 12-oldx1^post4 <= 0), cost: 1 New rule: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ 12-x1^0 <= 0), cost: 1 propagated equality oldx3^post4 = oldx3^0 propagated equality oldx1^post4 = x1^0 propagated equality x1^post4 = x1^0 propagated equality oldx0^post4 = x0^0 propagated equality oldx2^post4 = oldx2^0 propagated equality x0^post4 = x0^0 Simplified Guard Original rule: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ 12-x1^0 <= 0), cost: 1 New rule: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 12-x1^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 12-x1^0 <= 0, cost: 1 New rule: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 Propagated Equalities Original rule: l3 -> l2 : oldx0^0'=oldx0^post5, oldx1^0'=oldx1^post5, oldx2^0'=oldx2^post5, oldx3^0'=oldx3^post5, x0^0'=x0^post5, x1^0'=x1^post5, (-11+oldx1^post5 <= 0 /\ oldx2^0-oldx2^post5 == 0 /\ -oldx3^post5+oldx3^0 == 0 /\ -oldx1^post5+x1^post5 == 0 /\ -oldx0^post5+x0^post5 == 0 /\ oldx0^post5-x0^0 == 0 /\ oldx1^post5-x1^0 == 0), cost: 1 New rule: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ -11+x1^0 <= 0), cost: 1 propagated equality oldx2^post5 = oldx2^0 propagated equality oldx3^post5 = oldx3^0 propagated equality oldx1^post5 = x1^post5 propagated equality oldx0^post5 = x0^post5 propagated equality x0^post5 = x0^0 propagated equality x1^post5 = x1^0 Simplified Guard Original rule: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, (0 == 0 /\ -11+x1^0 <= 0), cost: 1 New rule: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, -11+x1^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, -11+x1^0 <= 0, cost: 1 New rule: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 Propagated Equalities Original rule: l1 -> l4 : oldx0^0'=oldx0^post6, oldx1^0'=oldx1^post6, oldx2^0'=oldx2^post6, oldx3^0'=oldx3^post6, x0^0'=x0^post6, x1^0'=x1^post6, (0 == 0 /\ 10-oldx0^post6 <= 0 /\ oldx0^post6-x0^0 == 0 /\ oldx1^post6-x1^0 == 0 /\ x1^post6-oldx2^post6 == 0 /\ x0^post6-oldx0^post6 == 0 /\ oldx3^0-oldx3^post6 == 0), cost: 1 New rule: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^post6, (0 == 0 /\ 10-x0^0 <= 0), cost: 1 propagated equality oldx0^post6 = x0^0 propagated equality oldx1^post6 = x1^0 propagated equality oldx2^post6 = x1^post6 propagated equality x0^post6 = x0^0 propagated equality oldx3^post6 = oldx3^0 Simplified Guard Original rule: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^post6, (0 == 0 /\ 10-x0^0 <= 0), cost: 1 New rule: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 New rule: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l1 -> l3 : oldx0^0'=oldx0^post7, oldx1^0'=oldx1^post7, oldx2^0'=oldx2^post7, oldx3^0'=oldx3^post7, x0^0'=x0^post7, x1^0'=x1^post7, (x0^post7-oldx0^post7 == 0 /\ -3+x1^post7 == 0 /\ oldx0^post7-x0^0 == 0 /\ oldx2^0-oldx2^post7 == 0 /\ -9+oldx0^post7 <= 0 /\ oldx3^0-oldx3^post7 == 0 /\ oldx1^post7-x1^0 == 0), cost: 1 New rule: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=3, (0 == 0 /\ -9+x0^0 <= 0), cost: 1 propagated equality oldx0^post7 = x0^post7 propagated equality x1^post7 = 3 propagated equality x0^post7 = x0^0 propagated equality oldx2^post7 = oldx2^0 propagated equality oldx3^post7 = oldx3^0 propagated equality oldx1^post7 = x1^0 Simplified Guard Original rule: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=3, (0 == 0 /\ -9+x0^0 <= 0), cost: 1 New rule: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 New rule: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l6 -> l1 : oldx0^0'=oldx0^post8, oldx1^0'=oldx1^post8, oldx2^0'=oldx2^post8, oldx3^0'=oldx3^post8, x0^0'=x0^post8, x1^0'=x1^post8, (0 == 0 /\ x0^post8 == 0 /\ oldx1^post8-x1^0 == 0 /\ -oldx3^post8+oldx3^0 == 0 /\ oldx0^post8-x0^0 == 0 /\ x1^post8-oldx2^post8 == 0), cost: 1 New rule: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, oldx3^0'=oldx3^0, x0^0'=0, x1^0'=x1^post8, 0 == 0, cost: 1 propagated equality x0^post8 = 0 propagated equality oldx1^post8 = x1^0 propagated equality oldx3^post8 = oldx3^0 propagated equality oldx0^post8 = x0^0 propagated equality oldx2^post8 = x1^post8 Simplified Guard Original rule: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, oldx3^0'=oldx3^0, x0^0'=0, x1^0'=x1^post8, 0 == 0, cost: 1 New rule: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, oldx3^0'=oldx3^0, x0^0'=0, x1^0'=x1^post8, T, cost: 1 Removed Trivial Updates Original rule: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, oldx3^0'=oldx3^0, x0^0'=0, x1^0'=x1^post8, T, cost: 1 New rule: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 Propagated Equalities Original rule: l7 -> l6 : oldx0^0'=oldx0^post9, oldx1^0'=oldx1^post9, oldx2^0'=oldx2^post9, oldx3^0'=oldx3^post9, x0^0'=x0^post9, x1^0'=x1^post9, (0 == 0 /\ oldx0^post9-x0^0 == 0 /\ oldx1^post9-x1^0 == 0 /\ x0^post9-oldx2^post9 == 0 /\ x1^post9-oldx3^post9 == 0), cost: 1 New rule: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, 0 == 0, cost: 1 propagated equality oldx0^post9 = x0^0 propagated equality oldx1^post9 = x1^0 propagated equality oldx2^post9 = x0^post9 propagated equality oldx3^post9 = x1^post9 Simplified Guard Original rule: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, 0 == 0, cost: 1 New rule: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 Propagated Equalities Original rule: l7 -> l5 : oldx0^0'=oldx0^post10, oldx1^0'=oldx1^post10, oldx2^0'=oldx2^post10, oldx3^0'=oldx3^post10, x0^0'=x0^post10, x1^0'=x1^post10, (oldx0^0-oldx0^post10 == 0 /\ -oldx1^post10+oldx1^0 == 0 /\ -x1^post10+x1^0 == 0 /\ -oldx3^post10+oldx3^0 == 0 /\ oldx2^0-oldx2^post10 == 0 /\ -x0^post10+x0^0 == 0), cost: 1 New rule: l7 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx0^post10 = oldx0^0 propagated equality oldx1^post10 = oldx1^0 propagated equality x1^post10 = x1^0 propagated equality oldx3^post10 = oldx3^0 propagated equality oldx2^post10 = oldx2^0 propagated equality x0^post10 = x0^0 Simplified Guard Original rule: l7 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l7 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l7 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l7 -> l5 : T, cost: 1 Propagated Equalities Original rule: l7 -> l0 : oldx0^0'=oldx0^post11, oldx1^0'=oldx1^post11, oldx2^0'=oldx2^post11, oldx3^0'=oldx3^post11, x0^0'=x0^post11, x1^0'=x1^post11, (-x1^post11+x1^0 == 0 /\ oldx1^0-oldx1^post11 == 0 /\ oldx2^0-oldx2^post11 == 0 /\ -x0^post11+x0^0 == 0 /\ -oldx3^post11+oldx3^0 == 0 /\ oldx0^0-oldx0^post11 == 0), cost: 1 New rule: l7 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality x1^post11 = x1^0 propagated equality oldx1^post11 = oldx1^0 propagated equality oldx2^post11 = oldx2^0 propagated equality x0^post11 = x0^0 propagated equality oldx3^post11 = oldx3^0 propagated equality oldx0^post11 = oldx0^0 Simplified Guard Original rule: l7 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l7 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l7 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l7 -> l0 : T, cost: 1 Propagated Equalities Original rule: l7 -> l2 : oldx0^0'=oldx0^post12, oldx1^0'=oldx1^post12, oldx2^0'=oldx2^post12, oldx3^0'=oldx3^post12, x0^0'=x0^post12, x1^0'=x1^post12, (-x0^post12+x0^0 == 0 /\ oldx1^0-oldx1^post12 == 0 /\ -x1^post12+x1^0 == 0 /\ oldx2^0-oldx2^post12 == 0 /\ -oldx3^post12+oldx3^0 == 0 /\ oldx0^0-oldx0^post12 == 0), cost: 1 New rule: l7 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality x0^post12 = x0^0 propagated equality oldx1^post12 = oldx1^0 propagated equality x1^post12 = x1^0 propagated equality oldx2^post12 = oldx2^0 propagated equality oldx3^post12 = oldx3^0 propagated equality oldx0^post12 = oldx0^0 Simplified Guard Original rule: l7 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l7 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l7 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l7 -> l2 : T, cost: 1 Propagated Equalities Original rule: l7 -> l4 : oldx0^0'=oldx0^post13, oldx1^0'=oldx1^post13, oldx2^0'=oldx2^post13, oldx3^0'=oldx3^post13, x0^0'=x0^post13, x1^0'=x1^post13, (oldx2^0-oldx2^post13 == 0 /\ -x0^post13+x0^0 == 0 /\ -x1^post13+x1^0 == 0 /\ -oldx3^post13+oldx3^0 == 0 /\ oldx0^0-oldx0^post13 == 0 /\ oldx1^0-oldx1^post13 == 0), cost: 1 New rule: l7 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx2^post13 = oldx2^0 propagated equality x0^post13 = x0^0 propagated equality x1^post13 = x1^0 propagated equality oldx3^post13 = oldx3^0 propagated equality oldx0^post13 = oldx0^0 propagated equality oldx1^post13 = oldx1^0 Simplified Guard Original rule: l7 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l7 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l7 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l7 -> l4 : T, cost: 1 Propagated Equalities Original rule: l7 -> l3 : oldx0^0'=oldx0^post14, oldx1^0'=oldx1^post14, oldx2^0'=oldx2^post14, oldx3^0'=oldx3^post14, x0^0'=x0^post14, x1^0'=x1^post14, (-oldx1^post14+oldx1^0 == 0 /\ -oldx3^post14+oldx3^0 == 0 /\ -x0^post14+x0^0 == 0 /\ x1^0-x1^post14 == 0 /\ oldx2^0-oldx2^post14 == 0 /\ -oldx0^post14+oldx0^0 == 0), cost: 1 New rule: l7 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx1^post14 = oldx1^0 propagated equality oldx3^post14 = oldx3^0 propagated equality x0^post14 = x0^0 propagated equality x1^post14 = x1^0 propagated equality oldx2^post14 = oldx2^0 propagated equality oldx0^post14 = oldx0^0 Simplified Guard Original rule: l7 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l7 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l7 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l7 -> l3 : T, cost: 1 Propagated Equalities Original rule: l7 -> l1 : oldx0^0'=oldx0^post15, oldx1^0'=oldx1^post15, oldx2^0'=oldx2^post15, oldx3^0'=oldx3^post15, x0^0'=x0^post15, x1^0'=x1^post15, (-oldx1^post15+oldx1^0 == 0 /\ x1^0-x1^post15 == 0 /\ oldx2^0-oldx2^post15 == 0 /\ -oldx3^post15+oldx3^0 == 0 /\ -x0^post15+x0^0 == 0 /\ -oldx0^post15+oldx0^0 == 0), cost: 1 New rule: l7 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx1^post15 = oldx1^0 propagated equality x1^post15 = x1^0 propagated equality oldx2^post15 = oldx2^0 propagated equality oldx3^post15 = oldx3^0 propagated equality x0^post15 = x0^0 propagated equality oldx0^post15 = oldx0^0 Simplified Guard Original rule: l7 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l7 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l7 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l7 -> l1 : T, cost: 1 Propagated Equalities Original rule: l7 -> l6 : oldx0^0'=oldx0^post16, oldx1^0'=oldx1^post16, oldx2^0'=oldx2^post16, oldx3^0'=oldx3^post16, x0^0'=x0^post16, x1^0'=x1^post16, (oldx2^0-oldx2^post16 == 0 /\ oldx0^0-oldx0^post16 == 0 /\ -x0^post16+x0^0 == 0 /\ oldx3^0-oldx3^post16 == 0 /\ -oldx1^post16+oldx1^0 == 0 /\ -x1^post16+x1^0 == 0), cost: 1 New rule: l7 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx2^post16 = oldx2^0 propagated equality oldx0^post16 = oldx0^0 propagated equality x0^post16 = x0^0 propagated equality oldx3^post16 = oldx3^0 propagated equality oldx1^post16 = oldx1^0 propagated equality x1^post16 = x1^0 Simplified Guard Original rule: l7 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l7 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l7 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l7 -> l6 : T, cost: 1 Propagated Equalities Original rule: l8 -> l7 : oldx0^0'=oldx0^post17, oldx1^0'=oldx1^post17, oldx2^0'=oldx2^post17, oldx3^0'=oldx3^post17, x0^0'=x0^post17, x1^0'=x1^post17, (oldx2^0-oldx2^post17 == 0 /\ -oldx1^post17+oldx1^0 == 0 /\ -x0^post17+x0^0 == 0 /\ oldx0^0-oldx0^post17 == 0 /\ oldx3^0-oldx3^post17 == 0 /\ -x1^post17+x1^0 == 0), cost: 1 New rule: l8 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 propagated equality oldx2^post17 = oldx2^0 propagated equality oldx1^post17 = oldx1^0 propagated equality x0^post17 = x0^0 propagated equality oldx0^post17 = oldx0^0 propagated equality oldx3^post17 = oldx3^0 propagated equality x1^post17 = x1^0 Simplified Guard Original rule: l8 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, 0 == 0, cost: 1 New rule: l8 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 Removed Trivial Updates Original rule: l8 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, x0^0'=x0^0, x1^0'=x1^0, T, cost: 1 New rule: l8 -> l7 : T, cost: 1 Step with 33 Trace 33[T] Blocked [{}, {}] Step with 25 Trace 33[T], 25[T] Blocked [{}, {}, {}] Step with 24 Trace 33[T], 25[T], 24[T] Blocked [{}, {}, {}, {}] Step with 23 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {}] Step with 21 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {20[T]}, {}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {}, {}, {22[T]}, {20[T]}, {}, {}] Accelerate Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 34: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Loop Acceleration Original rule: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, -11+x1^0 <= 0, cost: 1 New rule: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 11-x1^0 >= 0 [0]: montonic decrease yields 12-x1^0-n >= 0 11-x1^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ 11-x1^0 >= 0) Replacement map: {11-x1^0 >= 0 -> 12-x1^0-n >= 0} Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {}, {}, {22[T]}, {20[T]}, {34[T]}] Step with 20 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {20[T]}, {34[T]}, {}] Step with 17 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {}, {}, {22[T]}, {20[T]}, {34[T]}, {}, {}] Accelerate Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 35: l1 -> l1 : oldx0^0'=-1+n2+x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=n2+x0^0, x1^0'=x1^post1, (-1+n2 >= 0 /\ 10-n2-x0^0 >= 0), cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 34: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Loop Acceleration Original rule: l1 -> l1 : oldx0^0'=x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, -9+x0^0 <= 0, cost: 1 New rule: l1 -> l1 : oldx0^0'=-1+n2+x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=n2+x0^0, x1^0'=x1^post1, (-1+n2 >= 0 /\ 10-n2-x0^0 >= 0), cost: 1 9-x0^0 >= 0 [0]: montonic decrease yields 10-n2-x0^0 >= 0 9-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ 9-x0^0 >= 0) Replacement map: {9-x0^0 >= 0 -> 10-n2-x0^0 >= 0} Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {}, {}, {22[T]}, {35[T]}] Step with 22 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {}, {}, {22[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {}] Step with 21 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T]}, {}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T]}, {}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T]}, {18[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T], 21[T]}] Step with 34 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T], 21[T]}, {34[T]}] Step with 20 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T], 21[T]}, {34[T]}, {}] Step with 17 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T], 21[T]}, {34[T]}, {}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T], 21[T]}, {34[T]}, {17[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T], 21[T]}, {20[T], 34[T]}] Step with 21 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T], 21[T]}, {20[T], 34[T]}, {}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T], 21[T]}, {20[T], 34[T]}, {}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T], 21[T]}, {20[T], 34[T]}, {18[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T], 21[T]}, {20[T], 21[T], 34[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {}, {}, {22[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 25[T], 24[T] Blocked [{}, {}, {}, {22[T], 35[T]}] Step with 23 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {}] Step with 21 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {}, {}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {}, {}, {22[T], 35[T]}, {}, {}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {}, {18[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {21[T]}] Step with 34 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {21[T]}, {34[T]}] Step with 20 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {21[T]}, {34[T]}, {}] Step with 17 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {}, {}, {22[T], 35[T]}, {21[T]}, {34[T]}, {}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {21[T]}, {34[T]}, {17[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}] Step with 21 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}, {}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {}, {}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}, {}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}, {18[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {21[T]}, {20[T], 21[T], 34[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {}, {}, {22[T], 35[T]}, {21[T], 34[T]}] Backtrack Trace 33[T], 25[T], 24[T] Blocked [{}, {}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 25[T] Blocked [{}, {}, {24[T]}] Backtrack Trace 33[T] Blocked [{}, {25[T]}] Step with 26 Trace 33[T], 26[T] Blocked [{}, {25[T]}, {}] Backtrack Trace 33[T] Blocked [{}, {25[T], 26[T]}] Step with 27 Trace 33[T], 27[T] Blocked [{}, {25[T], 26[T]}, {}] Step with 17 Trace 33[T], 27[T], 17[T] Blocked [{}, {25[T], 26[T]}, {}, {}] Step with 23 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {}, {}] Step with 21 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {}, {}, {}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T]}, {}, {}, {}, {}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {}, {}, {18[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {}, {21[T]}] Step with 34 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {}, {21[T]}, {34[T]}] Step with 20 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {}, {21[T]}, {34[T]}, {}] Accelerate Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 36: l0 -> l0 : oldx0^0'=n6+x0^0, oldx1^0'=12, oldx2^0'=x1^post112, x0^0'=n6+x0^0, x1^0'=12, (9-n6-x0^0 >= 0 /\ -1+n6 >= 0), cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 35: l1 -> l1 : oldx0^0'=-1+n2+x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=n2+x0^0, x1^0'=x1^post1, (-1+n2 >= 0 /\ 10-n2-x0^0 >= 0), cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 34: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Loop Acceleration Original rule: l0 -> l0 : oldx0^0'=1+x0^0, oldx1^0'=12, oldx2^0'=x1^post112, x0^0'=1+x0^0, x1^0'=12, -8+x0^0 <= 0, cost: 1 New rule: l0 -> l0 : oldx0^0'=n6+x0^0, oldx1^0'=12, oldx2^0'=x1^post112, x0^0'=n6+x0^0, x1^0'=12, (9-n6-x0^0 >= 0 /\ -1+n6 >= 0), cost: 1 8-x0^0 >= 0 [0]: montonic decrease yields 9-n6-x0^0 >= 0 8-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ 8-x0^0 >= 0) Replacement map: {8-x0^0 >= 0 -> 9-n6-x0^0 >= 0} Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}] Step with 17 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}] Step with 23 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T]}, {}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T]}, {}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T]}, {18[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T], 21[T]}] Step with 34 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T], 21[T]}, {34[T]}] Step with 20 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T], 21[T]}, {34[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T], 21[T]}, {20[T], 34[T]}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T], 21[T]}, {20[T], 34[T]}, {}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T], 21[T]}, {20[T], 34[T]}, {}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T], 21[T]}, {20[T], 34[T]}, {18[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T], 21[T]}, {20[T], 21[T], 34[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {}, {20[T], 21[T], 34[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}] Step with 35 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {18[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {21[T]}] Step with 34 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {21[T]}, {34[T]}] Step with 20 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {21[T]}, {34[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}, {}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}, {}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}, {18[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {21[T]}, {20[T], 21[T], 34[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 35[T]}, {21[T], 34[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T], 35[T]}] Step with 22 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T]}, {}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T]}, {}, {17[T], 36[T]}] Backtrack Trace 33[T], 27[T] Blocked [{}, {25[T], 26[T]}, {36[T]}] Step with 17 Trace 33[T], 27[T], 17[T] Blocked [{}, {25[T], 26[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 27[T], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 27[T], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 27[T], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 27[T], 17[T] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {}] Step with 21 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {}, {}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {}, {}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {}, {18[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {21[T]}] Step with 34 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {21[T]}, {34[T]}] Step with 20 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {21[T]}, {34[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {21[T]}, {20[T], 34[T]}] Step with 21 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {21[T]}, {20[T], 34[T]}, {}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {21[T]}, {20[T], 34[T]}, {}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {21[T]}, {20[T], 34[T]}, {18[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {21[T]}, {20[T], 21[T], 34[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T]}, {21[T], 34[T]}] Backtrack Trace 33[T], 27[T], 17[T] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Step with 21 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {18[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {21[T]}] Step with 34 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {21[T]}, {34[T]}] Step with 20 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {21[T]}, {34[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}] Step with 21 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}, {}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}, {}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {21[T]}, {20[T], 34[T]}, {18[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {21[T]}, {20[T], 21[T], 34[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {21[T], 34[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 27[T], 17[T] Blocked [{}, {25[T], 26[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 27[T] Blocked [{}, {25[T], 26[T]}, {17[T], 36[T]}] Backtrack Trace 33[T] Blocked [{}, {25[T], 26[T], 27[T]}] Step with 28 Trace 33[T], 28[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}] Step with 18 Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {}] Step with 21 Trace 33[T], 28[T], 18[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {}, {}] Accelerate Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 36: l0 -> l0 : oldx0^0'=n6+x0^0, oldx1^0'=12, oldx2^0'=x1^post112, x0^0'=n6+x0^0, x1^0'=12, (9-n6-x0^0 >= 0 /\ -1+n6 >= 0), cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 35: l1 -> l1 : oldx0^0'=-1+n2+x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=n2+x0^0, x1^0'=x1^post1, (-1+n2 >= 0 /\ 10-n2-x0^0 >= 0), cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 37: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=n11+x1^0, x1^0'=n11+x1^0, (11-n11-x1^0 >= 0 /\ -1+n11 >= 0), cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 34: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Loop Acceleration Original rule: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=1+x1^0, x1^0'=1+x1^0, -10+x1^0 <= 0, cost: 1 New rule: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=n11+x1^0, x1^0'=n11+x1^0, (11-n11-x1^0 >= 0 /\ -1+n11 >= 0), cost: 1 10-x1^0 >= 0 [0]: montonic decrease yields 11-n11-x1^0 >= 0 10-x1^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ 10-x1^0 >= 0) Replacement map: {10-x1^0 >= 0 -> 11-n11-x1^0 >= 0} Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T]}] Step with 18 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T]}, {}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T]}, {}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T]}, {21[T]}] Step with 34 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T]}, {21[T]}, {34[T]}] Step with 20 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T]}, {21[T]}, {34[T]}, {}] Step with 17 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T]}, {21[T]}, {34[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T]}, {21[T]}, {34[T]}, {}, {}, {}] Acceleration Failed marked recursive suffix as redundant Accelerate Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 36: l0 -> l0 : oldx0^0'=n6+x0^0, oldx1^0'=12, oldx2^0'=x1^post112, x0^0'=n6+x0^0, x1^0'=12, (9-n6-x0^0 >= 0 /\ -1+n6 >= 0), cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 35: l1 -> l1 : oldx0^0'=-1+n2+x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=n2+x0^0, x1^0'=x1^post1, (-1+n2 >= 0 /\ 10-n2-x0^0 >= 0), cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 37: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=n11+x1^0, x1^0'=n11+x1^0, (11-n11-x1^0 >= 0 /\ -1+n11 >= 0), cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 34: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 38: l3 -> l3 : oldx0^0'=n13+x0^0, oldx1^0'=x1^post117, oldx2^0'=x1^post117, x0^0'=n13+x0^0, x1^0'=3, (11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Loop Acceleration Original rule: l3 -> l3 : oldx0^0'=1+x0^0, oldx1^0'=x1^post117, oldx2^0'=x1^post117, x0^0'=1+x0^0, x1^0'=3, (11-x1^0 >= 0 /\ -8+x0^0 <= 0), cost: 1 New rule: l3 -> l3 : oldx0^0'=n13+x0^0, oldx1^0'=x1^post117, oldx2^0'=x1^post117, x0^0'=n13+x0^0, x1^0'=3, (11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 11-x1^0 >= 0 [0]: monotonic increase yields 11-x1^0 >= 0 8-x0^0 >= 0 [0]: montonic decrease yields 9-n13-x0^0 >= 0 8-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ 8-x0^0 >= 0) Replacement map: {11-x1^0 >= 0 -> 11-x1^0 >= 0, 8-x0^0 >= 0 -> 9-n13-x0^0 >= 0} Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T]}, {21[T]}, {38[T]}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T]}, {21[T]}, {20[T], 38[T]}, {}] Accelerate Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 36: l0 -> l0 : oldx0^0'=n6+x0^0, oldx1^0'=12, oldx2^0'=x1^post112, x0^0'=n6+x0^0, x1^0'=12, (9-n6-x0^0 >= 0 /\ -1+n6 >= 0), cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 35: l1 -> l1 : oldx0^0'=-1+n2+x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=n2+x0^0, x1^0'=x1^post1, (-1+n2 >= 0 /\ 10-n2-x0^0 >= 0), cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 37: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=n11+x1^0, x1^0'=n11+x1^0, (11-n11-x1^0 >= 0 /\ -1+n11 >= 0), cost: 1 39: l2 -> l2 : oldx0^0'=(-1+n14)*n131+n131+x0^0, oldx1^0'=3, oldx2^0'=x1^post1171, x0^0'=n14*n131+x0^0, x1^0'=3, (-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0), cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 34: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 38: l3 -> l3 : oldx0^0'=n13+x0^0, oldx1^0'=x1^post117, oldx2^0'=x1^post117, x0^0'=n13+x0^0, x1^0'=3, (11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Loop Acceleration Original rule: l2 -> l2 : oldx0^0'=n131+x0^0, oldx1^0'=3, oldx2^0'=x1^post1171, x0^0'=n131+x0^0, x1^0'=3, (-1+n131 >= 0 /\ 9-n131-x0^0 >= 0 /\ 10-x1^0 >= 0), cost: 1 New rule: l2 -> l2 : oldx0^0'=(-1+n14)*n131+n131+x0^0, oldx1^0'=3, oldx2^0'=x1^post1171, x0^0'=n14*n131+x0^0, x1^0'=3, (-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0), cost: 1 -1+n131 >= 0 [0]: monotonic increase yields -1+n131 >= 0 9-n131-x0^0 >= 0 [0]: montonic decrease yields 9-(-1+n14)*n131-n131-x0^0 >= 0, dependencies: -1+n131 >= 0 9-n131-x0^0 >= 0 [1]: eventual increase yields (9-n131-x0^0 >= 0 /\ n131 <= 0), dependencies: -1+n131 >= 0 10-x1^0 >= 0 [0]: monotonic increase yields 10-x1^0 >= 0 Replacement map: {-1+n131 >= 0 -> -1+n131 >= 0, 9-n131-x0^0 >= 0 -> 9-(-1+n14)*n131-n131-x0^0 >= 0, 10-x1^0 >= 0 -> 10-x1^0 >= 0} Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T]}, {39[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}] Step with 18 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}] Step with 34 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T]}] Step with 38 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T]}, {38[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}] Step with 20 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}] Step with 17 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Acceleration Failed marked recursive suffix as redundant Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}] Step with 36 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {34[T], 38[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {20[T], 34[T], 38[T]}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {20[T], 34[T], 38[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T]}, {20[T], 21[T], 34[T], 38[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T], 34[T]}] Step with 38 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T], 34[T]}, {38[T]}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T], 34[T]}, {20[T], 38[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T], 34[T]}, {20[T], 21[T], 38[T]}] Step with 34 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T], 34[T]}, {20[T], 21[T], 38[T]}, {34[T]}] Accelerate Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 36: l0 -> l0 : oldx0^0'=n6+x0^0, oldx1^0'=12, oldx2^0'=x1^post112, x0^0'=n6+x0^0, x1^0'=12, (9-n6-x0^0 >= 0 /\ -1+n6 >= 0), cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 35: l1 -> l1 : oldx0^0'=-1+n2+x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=n2+x0^0, x1^0'=x1^post1, (-1+n2 >= 0 /\ 10-n2-x0^0 >= 0), cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 37: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=n11+x1^0, x1^0'=n11+x1^0, (11-n11-x1^0 >= 0 /\ -1+n11 >= 0), cost: 1 39: l2 -> l2 : oldx0^0'=(-1+n14)*n131+n131+x0^0, oldx1^0'=3, oldx2^0'=x1^post1171, x0^0'=n14*n131+x0^0, x1^0'=3, (-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0), cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 34: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 38: l3 -> l3 : oldx0^0'=n13+x0^0, oldx1^0'=x1^post117, oldx2^0'=x1^post117, x0^0'=n13+x0^0, x1^0'=3, (11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 40: l3 -> l3 : oldx0^0'=n133+(-1+n17)*n133+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post1173, x0^0'=n17*n133+x0^0, x1^0'=3+n, (8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0), cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Loop Acceleration Original rule: l3 -> l3 : oldx0^0'=n133+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post1173, x0^0'=n133+x0^0, x1^0'=3+n, (-1+n >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ 9-n133-x0^0 >= 0 /\ -1+n133 >= 0), cost: 1 New rule: l3 -> l3 : oldx0^0'=n133+(-1+n17)*n133+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post1173, x0^0'=n17*n133+x0^0, x1^0'=3+n, (8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0), cost: 1 -1+n >= 0 [0]: monotonic increase yields -1+n >= 0 11-x1^0 >= 0 [0]: eventual decrease yields (8-n >= 0 /\ 11-x1^0 >= 0) 11-x1^0 >= 0 [1]: eventual increase yields (3-x1^0+n <= 0 /\ 11-x1^0 >= 0) 9-n >= 0 [0]: monotonic increase yields 9-n >= 0 9-n133-x0^0 >= 0 [0]: montonic decrease yields 9-n133-(-1+n17)*n133-x0^0 >= 0, dependencies: -1+n133 >= 0 9-n133-x0^0 >= 0 [1]: eventual decrease yields (9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 9-n133-x0^0 >= 0) 9-n133-x0^0 >= 0 [2]: eventual increase yields (n133 <= 0 /\ 9-n133-x0^0 >= 0) -1+n133 >= 0 [0]: monotonic increase yields -1+n133 >= 0 Replacement map: {-1+n >= 0 -> -1+n >= 0, 11-x1^0 >= 0 -> (8-n >= 0 /\ 11-x1^0 >= 0), 9-n >= 0 -> 9-n >= 0, 9-n133-x0^0 >= 0 -> 9-n133-(-1+n17)*n133-x0^0 >= 0, -1+n133 >= 0 -> -1+n133 >= 0} Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T], 34[T]}, {40[T]}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {21[T], 34[T]}, {20[T], 40[T]}, {}] Accelerate Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 36: l0 -> l0 : oldx0^0'=n6+x0^0, oldx1^0'=12, oldx2^0'=x1^post112, x0^0'=n6+x0^0, x1^0'=12, (9-n6-x0^0 >= 0 /\ -1+n6 >= 0), cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 35: l1 -> l1 : oldx0^0'=-1+n2+x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=n2+x0^0, x1^0'=x1^post1, (-1+n2 >= 0 /\ 10-n2-x0^0 >= 0), cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 37: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=n11+x1^0, x1^0'=n11+x1^0, (11-n11-x1^0 >= 0 /\ -1+n11 >= 0), cost: 1 39: l2 -> l2 : oldx0^0'=(-1+n14)*n131+n131+x0^0, oldx1^0'=3, oldx2^0'=x1^post1171, x0^0'=n14*n131+x0^0, x1^0'=3, (-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0), cost: 1 41: l2 -> l2 : oldx0^0'=n171*n1331+n171*(-1+n19)*n1331+x0^0, oldx1^0'=3+n18, oldx2^0'=x1^post11731, x0^0'=n19*n171*n1331+x0^0, x1^0'=3+n18, (8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0), cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 34: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 38: l3 -> l3 : oldx0^0'=n13+x0^0, oldx1^0'=x1^post117, oldx2^0'=x1^post117, x0^0'=n13+x0^0, x1^0'=3, (11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 40: l3 -> l3 : oldx0^0'=n133+(-1+n17)*n133+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post1173, x0^0'=n17*n133+x0^0, x1^0'=3+n, (8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0), cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Loop Acceleration Original rule: l2 -> l2 : oldx0^0'=n171*n1331+x0^0, oldx1^0'=3+n18, oldx2^0'=x1^post11731, x0^0'=n171*n1331+x0^0, x1^0'=3+n18, (9-(-1+n171)*n1331-n1331-x0^0 >= 0 /\ 8-n18 >= 0 /\ -8+n18 <= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n171 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0), cost: 1 New rule: l2 -> l2 : oldx0^0'=n171*n1331+n171*(-1+n19)*n1331+x0^0, oldx1^0'=3+n18, oldx2^0'=x1^post11731, x0^0'=n19*n171*n1331+x0^0, x1^0'=3+n18, (8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0), cost: 1 9-(-1+n171)*n1331-n1331-x0^0 >= 0 [0]: montonic decrease yields 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0, dependencies: -1+n171 >= 0 -1+n1331 >= 0 9-(-1+n171)*n1331-n1331-x0^0 >= 0 [1]: eventual decrease yields (9-(-1+n171)*n1331-n1331-x0^0 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0) 9-(-1+n171)*n1331-n1331-x0^0 >= 0 [2]: eventual increase yields (9-(-1+n171)*n1331-n1331-x0^0 >= 0 /\ n171*n1331 <= 0) 8-n18 >= 0 [0]: monotonic increase yields 8-n18 >= 0 -1+n18 >= 0 [0]: monotonic increase yields -1+n18 >= 0 9-n18 >= 0 [0]: monotonic increase yields 9-n18 >= 0 -1+n171 >= 0 [0]: monotonic increase yields -1+n171 >= 0 -1+n1331 >= 0 [0]: monotonic increase yields -1+n1331 >= 0 10-x1^0 >= 0 [0]: eventual decrease yields (7-n18 >= 0 /\ 10-x1^0 >= 0) 10-x1^0 >= 0 [1]: eventual increase yields (3-x1^0+n18 <= 0 /\ 10-x1^0 >= 0) Replacement map: {9-(-1+n171)*n1331-n1331-x0^0 >= 0 -> 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0, 8-n18 >= 0 -> 8-n18 >= 0, -1+n18 >= 0 -> -1+n18 >= 0, 9-n18 >= 0 -> 9-n18 >= 0, -1+n171 >= 0 -> -1+n171 >= 0, -1+n1331 >= 0 -> -1+n1331 >= 0, 10-x1^0 >= 0 -> (7-n18 >= 0 /\ 10-x1^0 >= 0)} Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T]}, {}, {37[T], 39[T]}, {41[T]}] Restart Step with 33 Trace 33[T] Blocked [{}, {}] Step with 26 Trace 33[T], 26[T] Blocked [{}, {}, {}] Backtrack Trace 33[T] Blocked [{}, {26[T]}] Step with 30 Trace 33[T], 30[T] Blocked [{}, {26[T]}, {}] Step with 21 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {}, {}] Step with 18 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T]}, {}, {}, {}] Covered Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {}, {18[T]}] Step with 39 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T]}, {39[T]}] Step with 41 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {}, {18[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {}, {18[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T]}] Step with 41 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T]}, {41[T]}] Step with 37 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T]}, {41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T]}, {37[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {}, {18[T], 39[T]}, {37[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T]}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T]}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T]}, {}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T] Blocked [{}, {26[T]}, {21[T]}] Step with 20 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}] Step with 17 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {21[T]}, {}, {}] Step with 22 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {}, {}] Step with 19 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {21[T]}, {}, {}, {}, {}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {}, {19[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}] Step with 23 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {}] Step with 40 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {40[T]}] Acceleration Failed marked recursive suffix as redundant Step with 34 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {34[T], 38[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T]}, {21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}] Step with 21 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 21[T], 40[T]}] Step with 34 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {21[T]}, {}, {22[T]}, {20[T], 21[T], 40[T]}, {34[T]}] Accelerate Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 36: l0 -> l0 : oldx0^0'=n6+x0^0, oldx1^0'=12, oldx2^0'=x1^post112, x0^0'=n6+x0^0, x1^0'=12, (9-n6-x0^0 >= 0 /\ -1+n6 >= 0), cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 35: l1 -> l1 : oldx0^0'=-1+n2+x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=n2+x0^0, x1^0'=x1^post1, (-1+n2 >= 0 /\ 10-n2-x0^0 >= 0), cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 37: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=n11+x1^0, x1^0'=n11+x1^0, (11-n11-x1^0 >= 0 /\ -1+n11 >= 0), cost: 1 39: l2 -> l2 : oldx0^0'=(-1+n14)*n131+n131+x0^0, oldx1^0'=3, oldx2^0'=x1^post1171, x0^0'=n14*n131+x0^0, x1^0'=3, (-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0), cost: 1 41: l2 -> l2 : oldx0^0'=n171*n1331+n171*(-1+n19)*n1331+x0^0, oldx1^0'=3+n18, oldx2^0'=x1^post11731, x0^0'=n19*n171*n1331+x0^0, x1^0'=3+n18, (8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0), cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 34: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 38: l3 -> l3 : oldx0^0'=n13+x0^0, oldx1^0'=x1^post117, oldx2^0'=x1^post117, x0^0'=n13+x0^0, x1^0'=3, (11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 40: l3 -> l3 : oldx0^0'=n133+(-1+n17)*n133+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post1173, x0^0'=n17*n133+x0^0, x1^0'=3+n, (8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0), cost: 1 42: l3 -> l3 : oldx0^0'=n28+x0^0, oldx1^0'=11, oldx2^0'=x1^post122, x0^0'=n28+x0^0, x1^0'=12, (-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0), cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Loop Acceleration Original rule: l3 -> l3 : oldx0^0'=1+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post122, x0^0'=1+x0^0, x1^0'=3+n, (-1+n >= 0 /\ 9-n >= 0 /\ 12-x1^0 <= 0 /\ -8+x0^0 <= 0), cost: 1 New rule: l3 -> l3 : oldx0^0'=n28+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post122, x0^0'=n28+x0^0, x1^0'=3+n, (-1+n >= 0 /\ -12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n >= 0 /\ -9+n >= 0 /\ 9-n28-x0^0 >= 0), cost: 1 -1+n >= 0 [0]: monotonic increase yields -1+n >= 0 -12+x1^0 >= 0 [0]: eventual decrease yields (-12+x1^0 >= 0 /\ -9+n >= 0) -12+x1^0 >= 0 [1]: eventual increase yields (-3+x1^0-n <= 0 /\ -12+x1^0 >= 0) 9-n >= 0 [0]: monotonic increase yields 9-n >= 0 8-x0^0 >= 0 [0]: montonic decrease yields 9-n28-x0^0 >= 0 8-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ 8-x0^0 >= 0) Replacement map: {-1+n >= 0 -> -1+n >= 0, -12+x1^0 >= 0 -> (-12+x1^0 >= 0 /\ -9+n >= 0), 9-n >= 0 -> 9-n >= 0, 8-x0^0 >= 0 -> 9-n28-x0^0 >= 0} made implied equalities explicit Original rule: l3 -> l3 : oldx0^0'=n28+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post122, x0^0'=n28+x0^0, x1^0'=3+n, (-1+n >= 0 /\ -12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n >= 0 /\ -9+n >= 0 /\ 9-n28-x0^0 >= 0), cost: 1 New rule: l3 -> l3 : oldx0^0'=n28+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post122, x0^0'=n28+x0^0, x1^0'=3+n, (-1+n >= 0 /\ -12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n >= 0 /\ -9+n >= 0 /\ -9+n == 0 /\ 9-n28-x0^0 >= 0), cost: 1 Propagated Equalities Original rule: l3 -> l3 : oldx0^0'=n28+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post122, x0^0'=n28+x0^0, x1^0'=3+n, (-1+n >= 0 /\ -12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n >= 0 /\ -9+n >= 0 /\ -9+n == 0 /\ 9-n28-x0^0 >= 0), cost: 1 New rule: l3 -> l3 : oldx0^0'=n28+x0^0, oldx1^0'=11, oldx2^0'=x1^post122, x0^0'=n28+x0^0, x1^0'=12, (0 >= 0 /\ 0 == 0 /\ 8 >= 0 /\ -12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0), cost: 1 propagated equality n = 9 Simplified Guard Original rule: l3 -> l3 : oldx0^0'=n28+x0^0, oldx1^0'=11, oldx2^0'=x1^post122, x0^0'=n28+x0^0, x1^0'=12, (0 >= 0 /\ 0 == 0 /\ 8 >= 0 /\ -12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0), cost: 1 New rule: l3 -> l3 : oldx0^0'=n28+x0^0, oldx1^0'=11, oldx2^0'=x1^post122, x0^0'=n28+x0^0, x1^0'=12, (-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0), cost: 1 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {42[T]}] Step with 20 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}] Step with 17 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {}, {}] Covered Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T]}, {21[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 30[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T]}, {20[T], 21[T], 42[T]}] Backtrack Trace 33[T], 30[T] Blocked [{}, {26[T]}, {21[T], 42[T]}] Step with 20 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}] Step with 17 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {}] Step with 40 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {40[T]}] Step with 34 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}] Step with 21 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 21[T], 40[T]}] Step with 34 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 21[T], 40[T]}, {34[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Step with 38 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {38[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T]}] Step with 21 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 30[T], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T]}, {21[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 30[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}] Step with 34 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T]}] Step with 38 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T]}, {38[T]}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T]}] Step with 42 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {}] Step with 41 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {34[T], 38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {}, {}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 30[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 42[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 30[T] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}] Step with 40 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {40[T]}] Step with 34 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 42[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 30[T] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}] Step with 38 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T]}] Step with 21 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 30[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 40[T], 42[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 30[T] Blocked [{}, {26[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T] Blocked [{}, {26[T], 30[T]}] Step with 29 Trace 33[T], 29[T] Blocked [{}, {26[T], 30[T]}, {}] Step with 19 Trace 33[T], 29[T], 19[T] Blocked [{}, {26[T], 30[T]}, {}, {}] Backtrack Trace 33[T], 29[T] Blocked [{}, {26[T], 30[T]}, {19[T]}] Backtrack Trace 33[T] Blocked [{}, {26[T], 29[T], 30[T]}] Step with 31 Trace 33[T], 31[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}] Step with 23 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}] Step with 34 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T]}] Step with 38 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}] Step with 40 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}] Step with 21 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {34[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 31[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 31[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}] Step with 35 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}] Step with 34 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T]}] Step with 38 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}] Step with 40 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}] Step with 21 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 31[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 31[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T], 35[T]}] Step with 22 Trace 33[T], 31[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 31[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 31[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T]}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 31[T] Blocked [{}, {26[T], 29[T], 30[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}] Step with 27 Trace 33[T], 27[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}] Step with 17 Trace 33[T], 27[T], 17[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {}] Step with 22 Trace 33[T], 27[T], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {}, {}] Step with 19 Trace 33[T], 27[T], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {}, {}, {}] Backtrack Trace 33[T], 27[T], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {}, {19[T]}] Backtrack Trace 33[T], 27[T], 17[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}] Step with 23 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}] Step with 34 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T]}] Step with 38 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}] Step with 40 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}] Step with 21 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 27[T], 17[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}] Step with 35 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Step with 34 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T]}] Step with 38 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}] Step with 40 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}] Step with 21 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 27[T], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 27[T], 17[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 27[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}] Step with 36 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}] Step with 23 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}] Step with 34 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T]}] Step with 38 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}] Step with 40 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {34[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}] Step with 35 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}] Step with 34 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T]}] Step with 38 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}] Step with 40 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T], 35[T]}] Step with 22 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 27[T], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 27[T] Blocked [{}, {26[T], 29[T], 30[T], 31[T]}, {17[T], 36[T]}] Backtrack Trace 33[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}] Step with 32 Trace 33[T], 32[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}] Step with 24 Trace 33[T], 32[T], 24[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {}] Step with 23 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}] Step with 34 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T]}] Step with 38 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}] Step with 40 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}] Step with 21 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {34[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 32[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 32[T], 24[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}] Step with 35 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Step with 34 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T]}] Step with 38 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}] Step with 40 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}] Step with 21 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 32[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 32[T], 24[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 32[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T]}, {24[T]}] Backtrack Trace 33[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}] Step with 25 Trace 33[T], 25[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}] Step with 24 Trace 33[T], 25[T], 24[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}] Step with 23 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}] Step with 34 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T]}] Step with 38 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {34[T], 38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}] Step with 40 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}] Step with 21 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {34[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 25[T], 24[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 25[T], 24[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Step with 34 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T]}] Step with 38 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {34[T], 38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}] Step with 40 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}] Step with 21 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {34[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {37[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {39[T], 41[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Step with 18 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {37[T]}, {}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}] Step with 39 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T]}, {39[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}] Step with 41 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T]}, {41[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 39[T], 41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 25[T], 24[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 25[T], 24[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {23[T], 35[T]}] Backtrack Trace 33[T], 25[T] Blocked [{}, {26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {24[T]}] Backtrack Trace 33[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}] Step with 28 Trace 33[T], 28[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}] Step with 41 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {41[T]}] Step with 37 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {41[T]}, {37[T]}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}] Step with 18 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}] Step with 34 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {34[T]}] Step with 38 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {34[T], 38[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}, {}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {34[T]}] Step with 40 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {34[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {34[T], 40[T]}, {}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {37[T], 41[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {18[T], 37[T], 41[T]}] Step with 39 Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {18[T], 37[T], 41[T]}, {39[T]}] Covered Trace 33[T], 28[T], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 28[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}] Step with 39 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {39[T]}] Step with 41 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}] Step with 34 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {34[T]}] Step with 38 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {34[T], 38[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}, {}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {34[T]}] Step with 40 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {34[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {34[T], 40[T]}, {}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {37[T], 39[T], 41[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 28[T], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {41[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 28[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}] Step with 18 Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}] Step with 34 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {34[T]}] Step with 38 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {34[T]}, {38[T]}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {34[T], 38[T]}] Step with 42 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {34[T], 38[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {}, {}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {34[T]}] Step with 40 Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {34[T]}, {40[T]}] Step with 34 Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {34[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 18[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {34[T], 40[T]}, {}] Covered Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {21[T], 34[T], 40[T]}] Step with 20 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {21[T], 34[T], 40[T]}, {}] Step with 17 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {21[T], 34[T], 40[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {21[T], 34[T], 40[T]}, {}, {}, {}] Step with 40 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {21[T], 34[T], 40[T]}, {}, {}, {20[T]}, {40[T]}] Step with 34 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {21[T], 34[T], 40[T]}, {}, {}, {20[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {21[T], 34[T], 40[T]}, {}, {}, {20[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {21[T], 34[T], 40[T]}, {}, {}, {20[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {21[T], 34[T], 40[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {21[T], 34[T], 40[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Accelerate Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 36: l0 -> l0 : oldx0^0'=n6+x0^0, oldx1^0'=12, oldx2^0'=x1^post112, x0^0'=n6+x0^0, x1^0'=12, (9-n6-x0^0 >= 0 /\ -1+n6 >= 0), cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 35: l1 -> l1 : oldx0^0'=-1+n2+x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=n2+x0^0, x1^0'=x1^post1, (-1+n2 >= 0 /\ 10-n2-x0^0 >= 0), cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 37: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=n11+x1^0, x1^0'=n11+x1^0, (11-n11-x1^0 >= 0 /\ -1+n11 >= 0), cost: 1 39: l2 -> l2 : oldx0^0'=(-1+n14)*n131+n131+x0^0, oldx1^0'=3, oldx2^0'=x1^post1171, x0^0'=n14*n131+x0^0, x1^0'=3, (-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0), cost: 1 41: l2 -> l2 : oldx0^0'=n171*n1331+n171*(-1+n19)*n1331+x0^0, oldx1^0'=3+n18, oldx2^0'=x1^post11731, x0^0'=n19*n171*n1331+x0^0, x1^0'=3+n18, (8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0), cost: 1 43: l2 -> l2 : oldx0^0'=n153+n1755*n13355+(-1+n153)*n1755*n13355+x0^0, oldx1^0'=11, oldx2^0'=x1^post117355, x0^0'=n153+n153*n1755*n13355+x0^0, x1^0'=11, (-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0), cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 34: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 38: l3 -> l3 : oldx0^0'=n13+x0^0, oldx1^0'=x1^post117, oldx2^0'=x1^post117, x0^0'=n13+x0^0, x1^0'=3, (11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 40: l3 -> l3 : oldx0^0'=n133+(-1+n17)*n133+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post1173, x0^0'=n17*n133+x0^0, x1^0'=3+n, (8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0), cost: 1 42: l3 -> l3 : oldx0^0'=n28+x0^0, oldx1^0'=11, oldx2^0'=x1^post122, x0^0'=n28+x0^0, x1^0'=12, (-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0), cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Loop Acceleration Original rule: l2 -> l2 : oldx0^0'=1+n1755*n13355+x0^0, oldx1^0'=3+n151, oldx2^0'=x1^post117355, x0^0'=1+n1755*n13355+x0^0, x1^0'=3+n151, (8-n151 >= 0 /\ -8+n151 <= 0 /\ -1+n151 >= 0 /\ 11-x1^0 <= 0 /\ 9-n151 >= 0 /\ -1+n1755 >= 0 /\ 8-(-1+n1755)*n13355-n13355-x0^0 >= 0 /\ -1+n13355 >= 0 /\ -8+x0^0 <= 0), cost: 1 New rule: l2 -> l2 : oldx0^0'=n153+n1755*n13355+(-1+n153)*n1755*n13355+x0^0, oldx1^0'=3+n151, oldx2^0'=x1^post117355, x0^0'=n153+n153*n1755*n13355+x0^0, x1^0'=3+n151, (-1+n153 >= 0 /\ 8-n151 >= 0 /\ -8+n151 >= 0 /\ -1+n151 >= 0 /\ 9-n151 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0), cost: 1 8-n151 >= 0 [0]: monotonic increase yields 8-n151 >= 0 -1+n151 >= 0 [0]: monotonic increase yields -1+n151 >= 0 9-n151 >= 0 [0]: monotonic increase yields 9-n151 >= 0 -1+n1755 >= 0 [0]: monotonic increase yields -1+n1755 >= 0 8-(-1+n1755)*n13355-n13355-x0^0 >= 0 [0]: montonic decrease yields 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0, dependencies: 8-x0^0 >= 0 8-(-1+n1755)*n13355-n13355-x0^0 >= 0 [1]: eventual decrease yields (8-(-1+n1755)*n13355-n13355-x0^0 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0) 8-(-1+n1755)*n13355-n13355-x0^0 >= 0 [2]: eventual increase yields (8-(-1+n1755)*n13355-n13355-x0^0 >= 0 /\ 1+n1755*n13355 <= 0) -11+x1^0 >= 0 [0]: eventual decrease yields (-8+n151 >= 0 /\ -11+x1^0 >= 0) -11+x1^0 >= 0 [1]: eventual increase yields (-3+x1^0-n151 <= 0 /\ -11+x1^0 >= 0) -1+n13355 >= 0 [0]: monotonic increase yields -1+n13355 >= 0 8-x0^0 >= 0 [0]: montonic decrease yields 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0, dependencies: -1+n1755 >= 0 -1+n13355 >= 0 8-x0^0 >= 0 [1]: eventual increase yields (1+n1755*n13355 <= 0 /\ 8-x0^0 >= 0) Replacement map: {8-n151 >= 0 -> 8-n151 >= 0, -1+n151 >= 0 -> -1+n151 >= 0, 9-n151 >= 0 -> 9-n151 >= 0, -1+n1755 >= 0 -> -1+n1755 >= 0, 8-(-1+n1755)*n13355-n13355-x0^0 >= 0 -> 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0, -11+x1^0 >= 0 -> (-8+n151 >= 0 /\ -11+x1^0 >= 0), -1+n13355 >= 0 -> -1+n13355 >= 0, 8-x0^0 >= 0 -> 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0} made implied equalities explicit Original rule: l2 -> l2 : oldx0^0'=n153+n1755*n13355+(-1+n153)*n1755*n13355+x0^0, oldx1^0'=3+n151, oldx2^0'=x1^post117355, x0^0'=n153+n153*n1755*n13355+x0^0, x1^0'=3+n151, (-1+n153 >= 0 /\ 8-n151 >= 0 /\ -8+n151 >= 0 /\ -1+n151 >= 0 /\ 9-n151 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0), cost: 1 New rule: l2 -> l2 : oldx0^0'=n153+n1755*n13355+(-1+n153)*n1755*n13355+x0^0, oldx1^0'=3+n151, oldx2^0'=x1^post117355, x0^0'=n153+n153*n1755*n13355+x0^0, x1^0'=3+n151, (-1+n153 >= 0 /\ 8-n151 >= 0 /\ -8+n151 >= 0 /\ -8+n151 == 0 /\ -1+n151 >= 0 /\ 9-n151 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0), cost: 1 Propagated Equalities Original rule: l2 -> l2 : oldx0^0'=n153+n1755*n13355+(-1+n153)*n1755*n13355+x0^0, oldx1^0'=3+n151, oldx2^0'=x1^post117355, x0^0'=n153+n153*n1755*n13355+x0^0, x1^0'=3+n151, (-1+n153 >= 0 /\ 8-n151 >= 0 /\ -8+n151 >= 0 /\ -8+n151 == 0 /\ -1+n151 >= 0 /\ 9-n151 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0), cost: 1 New rule: l2 -> l2 : oldx0^0'=n153+n1755*n13355+(-1+n153)*n1755*n13355+x0^0, oldx1^0'=11, oldx2^0'=x1^post117355, x0^0'=n153+n153*n1755*n13355+x0^0, x1^0'=11, (0 >= 0 /\ 0 == 0 /\ -1+n153 >= 0 /\ 1 >= 0 /\ -1+n1755 >= 0 /\ 7 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0), cost: 1 propagated equality n151 = 8 Simplified Guard Original rule: l2 -> l2 : oldx0^0'=n153+n1755*n13355+(-1+n153)*n1755*n13355+x0^0, oldx1^0'=11, oldx2^0'=x1^post117355, x0^0'=n153+n153*n1755*n13355+x0^0, x1^0'=11, (0 >= 0 /\ 0 == 0 /\ -1+n153 >= 0 /\ 1 >= 0 /\ -1+n1755 >= 0 /\ 7 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0), cost: 1 New rule: l2 -> l2 : oldx0^0'=n153+n1755*n13355+(-1+n153)*n1755*n13355+x0^0, oldx1^0'=11, oldx2^0'=x1^post117355, x0^0'=n153+n153*n1755*n13355+x0^0, x1^0'=11, (-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0), cost: 1 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}] Step with 18 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {}] Step with 20 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}] Step with 17 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {}] Step with 40 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T]}, {40[T]}] Step with 34 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {}] Acceleration Failed marked recursive suffix as redundant Acceleration Failed marked recursive suffix as redundant Step with 18 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}] Step with 39 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T]}] Acceleration Failed marked recursive suffix as redundant Acceleration Failed marked recursive suffix as redundant Step with 41 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {37[T], 39[T], 41[T], 43[T]}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {18[T], 37[T], 39[T], 41[T], 43[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T]}] Step with 41 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T]}, {41[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Accelerate Start location: l8 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 x0^0 x1^0 17: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post1, x0^0'=1+x0^0, x1^0'=x1^post1, T, cost: 1 36: l0 -> l0 : oldx0^0'=n6+x0^0, oldx1^0'=12, oldx2^0'=x1^post112, x0^0'=n6+x0^0, x1^0'=12, (9-n6-x0^0 >= 0 /\ -1+n6 >= 0), cost: 1 22: l1 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post6, x1^0'=x1^post6, 10-x0^0 <= 0, cost: 1 23: l1 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=3, -9+x0^0 <= 0, cost: 1 35: l1 -> l1 : oldx0^0'=-1+n2+x0^0, oldx1^0'=12, oldx2^0'=x1^post1, x0^0'=n2+x0^0, x1^0'=x1^post1, (-1+n2 >= 0 /\ 10-n2-x0^0 >= 0), cost: 1 18: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, x1^0'=1+x1^0, T, cost: 1 37: l2 -> l2 : oldx0^0'=x0^0, oldx1^0'=n11+x1^0, x1^0'=n11+x1^0, (11-n11-x1^0 >= 0 /\ -1+n11 >= 0), cost: 1 39: l2 -> l2 : oldx0^0'=(-1+n14)*n131+n131+x0^0, oldx1^0'=3, oldx2^0'=x1^post1171, x0^0'=n14*n131+x0^0, x1^0'=3, (-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0), cost: 1 41: l2 -> l2 : oldx0^0'=n171*n1331+n171*(-1+n19)*n1331+x0^0, oldx1^0'=3+n18, oldx2^0'=x1^post11731, x0^0'=n19*n171*n1331+x0^0, x1^0'=3+n18, (8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0), cost: 1 43: l2 -> l2 : oldx0^0'=n153+n1755*n13355+(-1+n153)*n1755*n13355+x0^0, oldx1^0'=11, oldx2^0'=x1^post117355, x0^0'=n153+n153*n1755*n13355+x0^0, x1^0'=11, (-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0), cost: 1 44: l2 -> l2 : oldx0^0'=n156+x0^0, oldx1^0'=11, oldx2^0'=x1^post167, x0^0'=n156+x0^0, x1^0'=11, (9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0), cost: 1 20: l3 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, 12-x1^0 <= 0, cost: 1 21: l3 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, -11+x1^0 <= 0, cost: 1 34: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=-1+x1^0+n, x1^0'=x1^0+n, (-1+n >= 0 /\ 12-x1^0-n >= 0), cost: 1 38: l3 -> l3 : oldx0^0'=n13+x0^0, oldx1^0'=x1^post117, oldx2^0'=x1^post117, x0^0'=n13+x0^0, x1^0'=3, (11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 40: l3 -> l3 : oldx0^0'=n133+(-1+n17)*n133+x0^0, oldx1^0'=2+n, oldx2^0'=x1^post1173, x0^0'=n17*n133+x0^0, x1^0'=3+n, (8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0), cost: 1 42: l3 -> l3 : oldx0^0'=n28+x0^0, oldx1^0'=11, oldx2^0'=x1^post122, x0^0'=n28+x0^0, x1^0'=12, (-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0), cost: 1 19: l4 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post3, oldx3^0'=x1^post3, x0^0'=x0^post3, x1^0'=x1^post3, T, cost: 1 24: l6 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x1^post8, x0^0'=0, x1^0'=x1^post8, T, cost: 1 25: l7 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x0^post9, oldx3^0'=x1^post9, x0^0'=x0^post9, x1^0'=x1^post9, T, cost: 1 26: l7 -> l5 : T, cost: 1 27: l7 -> l0 : T, cost: 1 28: l7 -> l2 : T, cost: 1 29: l7 -> l4 : T, cost: 1 30: l7 -> l3 : T, cost: 1 31: l7 -> l1 : T, cost: 1 32: l7 -> l6 : T, cost: 1 33: l8 -> l7 : T, cost: 1 Loop Acceleration Original rule: l2 -> l2 : oldx0^0'=1+x0^0, oldx1^0'=3+n11, oldx2^0'=x1^post167, x0^0'=1+x0^0, x1^0'=3+n11, (11-x1^0 <= 0 /\ 8-n11 >= 0 /\ -1+n11 >= 0 /\ -8+x0^0 <= 0), cost: 1 New rule: l2 -> l2 : oldx0^0'=n156+x0^0, oldx1^0'=3+n11, oldx2^0'=x1^post167, x0^0'=n156+x0^0, x1^0'=3+n11, (9-n156-x0^0 >= 0 /\ 8-n11 >= 0 /\ -8+n11 >= 0 /\ -1+n11 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0), cost: 1 8-n11 >= 0 [0]: monotonic increase yields 8-n11 >= 0 -1+n11 >= 0 [0]: monotonic increase yields -1+n11 >= 0 -11+x1^0 >= 0 [0]: eventual decrease yields (-8+n11 >= 0 /\ -11+x1^0 >= 0) -11+x1^0 >= 0 [1]: eventual increase yields (-3-n11+x1^0 <= 0 /\ -11+x1^0 >= 0) 8-x0^0 >= 0 [0]: montonic decrease yields 9-n156-x0^0 >= 0 8-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ 8-x0^0 >= 0) Replacement map: {8-n11 >= 0 -> 8-n11 >= 0, -1+n11 >= 0 -> -1+n11 >= 0, -11+x1^0 >= 0 -> (-8+n11 >= 0 /\ -11+x1^0 >= 0), 8-x0^0 >= 0 -> 9-n156-x0^0 >= 0} made implied equalities explicit Original rule: l2 -> l2 : oldx0^0'=n156+x0^0, oldx1^0'=3+n11, oldx2^0'=x1^post167, x0^0'=n156+x0^0, x1^0'=3+n11, (9-n156-x0^0 >= 0 /\ 8-n11 >= 0 /\ -8+n11 >= 0 /\ -1+n11 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0), cost: 1 New rule: l2 -> l2 : oldx0^0'=n156+x0^0, oldx1^0'=3+n11, oldx2^0'=x1^post167, x0^0'=n156+x0^0, x1^0'=3+n11, (9-n156-x0^0 >= 0 /\ 8-n11 >= 0 /\ -8+n11 >= 0 /\ -8+n11 == 0 /\ -1+n11 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0), cost: 1 Propagated Equalities Original rule: l2 -> l2 : oldx0^0'=n156+x0^0, oldx1^0'=3+n11, oldx2^0'=x1^post167, x0^0'=n156+x0^0, x1^0'=3+n11, (9-n156-x0^0 >= 0 /\ 8-n11 >= 0 /\ -8+n11 >= 0 /\ -8+n11 == 0 /\ -1+n11 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0), cost: 1 New rule: l2 -> l2 : oldx0^0'=n156+x0^0, oldx1^0'=11, oldx2^0'=x1^post167, x0^0'=n156+x0^0, x1^0'=11, (0 >= 0 /\ 0 == 0 /\ 9-n156-x0^0 >= 0 /\ 7 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0), cost: 1 propagated equality n11 = 8 Simplified Guard Original rule: l2 -> l2 : oldx0^0'=n156+x0^0, oldx1^0'=11, oldx2^0'=x1^post167, x0^0'=n156+x0^0, x1^0'=11, (0 >= 0 /\ 0 == 0 /\ 9-n156-x0^0 >= 0 /\ 7 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0), cost: 1 New rule: l2 -> l2 : oldx0^0'=n156+x0^0, oldx1^0'=11, oldx2^0'=x1^post167, x0^0'=n156+x0^0, x1^0'=11, (9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0), cost: 1 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T]}, {44[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}] Step with 18 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {}] Step with 20 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}] Step with 17 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {}] Step with 40 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T]}, {40[T]}] Step with 34 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {}] Step with 18 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}] Step with 39 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T]}] Step with 41 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T]}, {18[T], 37[T], 39[T], 41[T], 43[T], 44[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T]}] Step with 41 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T]}, {41[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 21[T], 40[T]}] Step with 34 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 21[T], 40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Step with 38 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {22[T], 35[T]}, {}, {38[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T]}] Step with 21 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}] Acceleration Failed marked recursive suffix as redundant Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {22[T], 35[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}] Step with 36 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {21[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T]}] Step with 42 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {42[T]}] Step with 20 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}] Step with 17 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T]}, {20[T], 21[T], 42[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Backtrack Trace 33[T], 28[T], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T]}, {18[T], 43[T], 44[T]}] Backtrack Trace 33[T], 28[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}] Step with 37 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T]}] Step with 43 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T]}, {43[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T]}] Step with 44 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T]}, {44[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}] Step with 18 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}] Step with 20 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}] Step with 17 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {}] Step with 40 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {40[T]}] Step with 34 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 21[T], 40[T]}] Step with 34 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 21[T], 40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {}] Step with 38 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {}, {38[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T]}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}] Step with 36 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}] Step with 34 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {34[T]}] Step with 38 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {34[T]}, {38[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {34[T], 38[T]}] Step with 42 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {34[T], 38[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 34[T]}] Step with 40 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 34[T]}, {40[T]}] Step with 34 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 34[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 34[T], 40[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Step with 42 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {42[T]}] Step with 20 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}] Step with 17 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {20[T], 21[T], 42[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {37[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {18[T], 37[T], 43[T], 44[T]}] Step with 39 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {18[T], 37[T], 43[T], 44[T]}, {39[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {18[T], 37[T], 39[T], 43[T], 44[T]}] Step with 41 Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {18[T], 37[T], 39[T], 43[T], 44[T]}, {41[T]}] Covered Trace 33[T], 28[T], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {39[T], 41[T], 43[T]}, {18[T], 37[T], 39[T], 41[T], 43[T], 44[T]}] Backtrack Trace 33[T], 28[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}] Step with 44 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}] Step with 18 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}] Step with 20 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}] Step with 17 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}] Step with 23 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {}] Step with 40 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T]}, {40[T]}] Step with 34 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T], 40[T]}, {}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T], 21[T], 40[T]}] Step with 34 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T], 21[T], 40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {}] Step with 38 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {}, {38[T]}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T]}] Step with 21 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}] Step with 36 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T]}] Step with 42 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {42[T]}] Step with 20 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}] Step with 17 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {}, {}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {21[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T]}, {20[T], 21[T], 42[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {44[T]}, {20[T], 34[T], 38[T], 42[T]}] Backtrack Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {18[T], 44[T]}] Step with 43 Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)], 43[(-1+n153 >= 0 /\ -1+n1755 >= 0 /\ 9-n153-(-1+n153)*n1755*n13355-x0^0 >= 0 /\ -11+x1^0 >= 0 /\ -1+n13355 >= 0 /\ 9-n153-(-1+n1755)*n13355-(-1+n153)*n1755*n13355-n13355-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {18[T], 37[T], 39[T], 41[T], 44[T]}, {43[T]}] Covered Trace 33[T], 28[T], 44[(9-n156-x0^0 >= 0 /\ -1+n156 >= 0 /\ -11+x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T]}, {18[T], 37[T], 39[T], 41[T], 43[T], 44[T]}] Backtrack Trace 33[T], 28[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}] Step with 18 Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}] Step with 20 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}] Step with 17 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}] Step with 23 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {}] Step with 40 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {40[T]}] Step with 34 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {}] Step with 18 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {}, {}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T]}] Step with 39 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T]}] Step with 41 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T]}, {41[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T], 41[T]}] Step with 37 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T]}, {39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T]}, {37[T], 39[T], 41[T]}] Step with 18 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T]}, {18[T], 37[T], 39[T], 41[T], 43[T], 44[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T], 39[T]}] Step with 41 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T], 39[T]}, {41[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}] Step with 37 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T], 39[T], 41[T]}, {37[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 40[T]}, {18[T], 37[T], 39[T], 41[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 21[T], 40[T]}] Step with 34 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 21[T], 40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {}] Step with 38 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {}, {38[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T]}] Step with 21 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}] Step with 37 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 37[(11-n11-x1^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {}, {37[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {37[T]}] Step with 18 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {37[T], 43[T], 44[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 37[T], 43[T], 44[T]}] Step with 39 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 39[(-1+n131 >= 0 /\ -1+n14 >= 0 /\ 9-(-1+n14)*n131-n131-x0^0 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 37[T], 43[T], 44[T]}, {39[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 43[T], 44[T]}] Step with 41 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)], 41[(8-n18 >= 0 /\ -1+n18 >= 0 /\ 9-n18 >= 0 /\ -1+n19 >= 0 /\ -1+n171 >= 0 /\ 9-(-1+n171)*n1331-n171*(-1+n19)*n1331-n1331-x0^0 >= 0 /\ 7-n18 >= 0 /\ -1+n1331 >= 0 /\ 10-x1^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 43[T], 44[T]}, {41[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {38[T], 42[T]}, {18[T], 37[T], 39[T], 41[T], 43[T], 44[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 35[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}] Step with 36 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 18[T], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}] Step with 34 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {34[T]}] Step with 38 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {34[T]}, {38[T]}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {34[T], 38[T]}] Step with 42 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {34[T], 38[T]}, {42[T]}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {34[T], 38[T], 42[T]}] Step with 21 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {34[T], 38[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}] Step with 20 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}] Step with 17 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {}, {}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {21[T], 34[T], 38[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {20[T], 21[T], 34[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {20[T], 21[T], 34[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 18[T], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 34[T]}] Step with 40 Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 34[T]}, {40[T]}] Step with 34 Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 34[T]}, {40[T]}, {34[T]}] Covered Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 34[T]}, {34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 34[T]}, {34[T], 40[T]}, {38[T]}] Covered Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 34[T]}, {34[T], 38[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 34[T]}, {34[T], 38[T], 40[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 34[T]}, {21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 34[T], 40[T]}] Step with 21 Trace 33[T], 28[T], 18[T], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 34[T], 40[T]}, {}] Covered Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}] Step with 38 Trace 33[T], 28[T], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T]}] Step with 21 Trace 33[T], 28[T], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 21[(-11+x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {38[T], 42[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {21[T], 38[T], 42[T]}] Step with 40 Trace 33[T], 28[T], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 40[(8-n >= 0 /\ -1+n >= 0 /\ -1+n17 >= 0 /\ 9-n133-(-1+n17)*n133-x0^0 >= 0 /\ 11-x1^0 >= 0 /\ 9-n >= 0 /\ -1+n133 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 42[T]}, {40[T]}] Covered Trace 33[T], 28[T], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}] Step with 34 Trace 33[T], 28[T], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 34[(-1+n >= 0 /\ 12-x1^0-n >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 38[T], 40[T], 42[T]}, {34[T]}] Covered Trace 33[T], 28[T], 18[T], 38[(11-x1^0 >= 0 /\ 9-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 40[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}] Step with 42 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {42[T]}] Step with 20 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}] Step with 17 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {}] Step with 23 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {}, {}] Covered Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}] Step with 35 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {23[T], 35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}] Step with 36 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}] Step with 17 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}] Step with 22 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}] Step with 35 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}] Step with 22 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}] Step with 19 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)], 19[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {}, {}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 22[(10-x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {35[T]}, {19[T]}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}] Step with 23 Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)], 23[(-9+x0^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 35[T]}, {}] Covered Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T], 35[(-1+n2 >= 0 /\ 10-n2-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)], 17[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {36[T]}, {22[T], 23[T], 35[T]}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)], 36[(9-n6-x0^0 >= 0 /\ -1+n6 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)], 20[(12-x1^0 <= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {21[T], 42[T]}, {17[T], 36[T]}] Backtrack Trace 33[T], 28[T], 18[T], 42[(-12+x1^0 >= 0 /\ -1+n28 >= 0 /\ 9-n28-x0^0 >= 0)] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T]}, {20[T], 21[T], 42[T]}] Backtrack Trace 33[T], 28[T], 18[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {37[T], 39[T], 41[T], 43[T], 44[T]}, {20[T], 21[T], 34[T], 38[T], 40[T], 42[T]}] Backtrack Trace 33[T], 28[T] Blocked [{}, {25[T], 26[T], 27[T], 29[T], 30[T], 31[T], 32[T]}, {18[T], 37[T], 39[T], 41[T], 43[T], 44[T]}] Backtrack Trace 33[T] Blocked [{}, {25[T], 26[T], 27[T], 28[T], 29[T], 30[T], 31[T], 32[T]}] Backtrack Trace Blocked [{33[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b