unknown Initial ITS Start location: l3 Program variables: x^0 y^0 z^0 0: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, z^0'=z^post1, (y^post1-y^0+z^0 == 0 /\ 1-x^0 <= 0 /\ -y^0-x^0+x^post1 == 0 /\ -1+z^post1-z^0 == 0), cost: 1 1: l1 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (x^0-x^post2 == 0 /\ -z^post2+z^0 == 0 /\ -y^post2+y^0 == 0), cost: 1 2: l2 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (x^0-x^post3 == 0 /\ -z^post3+z^0 == 0 /\ -y^post3+y^0 == 0), cost: 1 3: l3 -> l2 : x^0'=x^post4, y^0'=y^post4, z^0'=z^post4, (-y^post4+y^0 == 0 /\ -z^post4+z^0 == 0 /\ x^0-x^post4 == 0), cost: 1 Chained Linear Paths Start location: l3 Program variables: x^0 y^0 z^0 5: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (y^post1-y^0+z^0 == 0 /\ -y^post2+y^post1 == 0 /\ -z^post2+z^post1 == 0 /\ 1-x^0 <= 0 /\ -x^post2+x^post1 == 0 /\ -y^0-x^0+x^post1 == 0 /\ -1+z^post1-z^0 == 0), cost: 1 4: l3 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (x^post4-x^post3 == 0 /\ y^post4-y^post3 == 0 /\ -y^post4+y^0 == 0 /\ -z^post4+z^0 == 0 /\ x^0-x^post4 == 0 /\ z^post4-z^post3 == 0), cost: 1 Eliminating location l2 by chaining: Applied chaining First rule: l3 -> l2 : x^0'=x^post4, y^0'=y^post4, z^0'=z^post4, (-y^post4+y^0 == 0 /\ -z^post4+z^0 == 0 /\ x^0-x^post4 == 0), cost: 1 Second rule: l2 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (x^0-x^post3 == 0 /\ -z^post3+z^0 == 0 /\ -y^post3+y^0 == 0), cost: 1 New rule: l3 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (x^post4-x^post3 == 0 /\ y^post4-y^post3 == 0 /\ -y^post4+y^0 == 0 /\ -z^post4+z^0 == 0 /\ x^0-x^post4 == 0 /\ z^post4-z^post3 == 0), cost: 1 Applied deletion Removed the following rules: 2 3 Eliminating location l1 by chaining: Applied chaining First rule: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, z^0'=z^post1, (y^post1-y^0+z^0 == 0 /\ 1-x^0 <= 0 /\ -y^0-x^0+x^post1 == 0 /\ -1+z^post1-z^0 == 0), cost: 1 Second rule: l1 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (x^0-x^post2 == 0 /\ -z^post2+z^0 == 0 /\ -y^post2+y^0 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (y^post1-y^0+z^0 == 0 /\ -y^post2+y^post1 == 0 /\ -z^post2+z^post1 == 0 /\ 1-x^0 <= 0 /\ -x^post2+x^post1 == 0 /\ -y^0-x^0+x^post1 == 0 /\ -1+z^post1-z^0 == 0), cost: 1 Applied deletion Removed the following rules: 0 1 Simplified Transitions Start location: l3 Program variables: x^0 y^0 z^0 7: l0 -> l0 : x^0'=y^0+x^0, y^0'=y^0-z^0, z^0'=1+z^0, 1-x^0 <= 0, cost: 1 6: l3 -> l0 : T, cost: 1 Propagated Equalities Original rule: l3 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (x^post4-x^post3 == 0 /\ y^post4-y^post3 == 0 /\ -y^post4+y^0 == 0 /\ -z^post4+z^0 == 0 /\ x^0-x^post4 == 0 /\ z^post4-z^post3 == 0), cost: 1 New rule: l3 -> l0 : x^0'=x^post4, y^0'=y^post4, z^0'=z^post4, (0 == 0 /\ -y^post4+y^0 == 0 /\ -z^post4+z^0 == 0 /\ x^0-x^post4 == 0), cost: 1 propagated equality x^post3 = x^post4 propagated equality y^post3 = y^post4 propagated equality z^post3 = z^post4 Propagated Equalities Original rule: l3 -> l0 : x^0'=x^post4, y^0'=y^post4, z^0'=z^post4, (0 == 0 /\ -y^post4+y^0 == 0 /\ -z^post4+z^0 == 0 /\ x^0-x^post4 == 0), cost: 1 New rule: l3 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, 0 == 0, cost: 1 propagated equality y^post4 = y^0 propagated equality z^post4 = z^0 propagated equality x^post4 = x^0 Simplified Guard Original rule: l3 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, 0 == 0, cost: 1 New rule: l3 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, T, cost: 1 Removed Trivial Updates Original rule: l3 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, T, cost: 1 New rule: l3 -> l0 : T, cost: 1 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (y^post1-y^0+z^0 == 0 /\ -y^post2+y^post1 == 0 /\ -z^post2+z^post1 == 0 /\ 1-x^0 <= 0 /\ -x^post2+x^post1 == 0 /\ -y^0-x^0+x^post1 == 0 /\ -1+z^post1-z^0 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^post1, y^0'=y^post1, z^0'=z^post1, (0 == 0 /\ y^post1-y^0+z^0 == 0 /\ 1-x^0 <= 0 /\ -y^0-x^0+x^post1 == 0 /\ -1+z^post1-z^0 == 0), cost: 1 propagated equality y^post2 = y^post1 propagated equality z^post2 = z^post1 propagated equality x^post2 = x^post1 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post1, y^0'=y^post1, z^0'=z^post1, (0 == 0 /\ y^post1-y^0+z^0 == 0 /\ 1-x^0 <= 0 /\ -y^0-x^0+x^post1 == 0 /\ -1+z^post1-z^0 == 0), cost: 1 New rule: l0 -> l0 : x^0'=y^0+x^0, y^0'=y^0-z^0, z^0'=1+z^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 propagated equality y^post1 = y^0-z^0 propagated equality x^post1 = y^0+x^0 propagated equality z^post1 = 1+z^0 Simplified Guard Original rule: l0 -> l0 : x^0'=y^0+x^0, y^0'=y^0-z^0, z^0'=1+z^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 New rule: l0 -> l0 : x^0'=y^0+x^0, y^0'=y^0-z^0, z^0'=1+z^0, 1-x^0 <= 0, cost: 1 Step with 6 Trace 6[T] Blocked [{}, {}] Step with 7 Trace 6[T], 7[(1-x^0 <= 0)] Blocked [{}, {}, {}] Acceleration Failed marked recursive suffix as redundant Step with 7 Trace 6[T], 7[(1-x^0 <= 0)], 7[(1-x^0 <= 0)] Blocked [{}, {}, {}, {}] Covered Trace 6[T], 7[(1-x^0 <= 0)] Blocked [{}, {}, {7[T]}] Backtrack Trace 6[T] Blocked [{}, {7[T]}] Backtrack Trace Blocked [{6[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b