unknown Initial ITS Start location: l5 Program variables: __const_5^0 x^0 0: l0 -> l1 : __const_5^0'=__const_5^post1, x^0'=x^post1, (-1+x^post1 == 0 /\ -__const_5^post1+__const_5^0 == 0 /\ x^0 <= 0), cost: 1 1: l0 -> l1 : __const_5^0'=__const_5^post2, x^0'=x^post2, (1-x^0 <= 0 /\ -1+x^post2-x^0 == 0 /\ __const_5^0-__const_5^post2 == 0), cost: 1 4: l1 -> l2 : __const_5^0'=__const_5^post5, x^0'=x^post5, (-x^post5+x^0 == 0 /\ __const_5^0-__const_5^post5 == 0), cost: 1 2: l2 -> l3 : __const_5^0'=__const_5^post3, x^0'=x^post3, (x^0-x^post3 == 0 /\ __const_5^0-__const_5^post3 == 0 /\ 4-x^0 <= 0), cost: 1 3: l2 -> l0 : __const_5^0'=__const_5^post4, x^0'=x^post4, (-3+x^0 <= 0 /\ -x^post4+x^0 == 0 /\ -__const_5^post4+__const_5^0 == 0), cost: 1 5: l4 -> l1 : __const_5^0'=__const_5^post6, x^0'=x^post6, (0 == 0 /\ __const_5^0-__const_5^post6 == 0 /\ -__const_5^0+x^1 == 0), cost: 1 6: l5 -> l4 : __const_5^0'=__const_5^post7, x^0'=x^post7, (-x^post7+x^0 == 0 /\ __const_5^0-__const_5^post7 == 0), cost: 1 Chained Linear Paths Start location: l5 Program variables: __const_5^0 x^0 0: l0 -> l1 : __const_5^0'=__const_5^post1, x^0'=x^post1, (-1+x^post1 == 0 /\ -__const_5^post1+__const_5^0 == 0 /\ x^0 <= 0), cost: 1 1: l0 -> l1 : __const_5^0'=__const_5^post2, x^0'=x^post2, (1-x^0 <= 0 /\ -1+x^post2-x^0 == 0 /\ __const_5^0-__const_5^post2 == 0), cost: 1 4: l1 -> l2 : __const_5^0'=__const_5^post5, x^0'=x^post5, (-x^post5+x^0 == 0 /\ __const_5^0-__const_5^post5 == 0), cost: 1 2: l2 -> l3 : __const_5^0'=__const_5^post3, x^0'=x^post3, (x^0-x^post3 == 0 /\ __const_5^0-__const_5^post3 == 0 /\ 4-x^0 <= 0), cost: 1 3: l2 -> l0 : __const_5^0'=__const_5^post4, x^0'=x^post4, (-3+x^0 <= 0 /\ -x^post4+x^0 == 0 /\ -__const_5^post4+__const_5^0 == 0), cost: 1 7: l5 -> l1 : __const_5^0'=__const_5^post6, x^0'=x^post6, (0 == 0 /\ __const_5^post7-__const_5^post6 == 0 /\ -__const_5^post7+x^1 == 0 /\ -x^post7+x^0 == 0 /\ __const_5^0-__const_5^post7 == 0), cost: 1 Eliminating location l4 by chaining: Applied chaining First rule: l5 -> l4 : __const_5^0'=__const_5^post7, x^0'=x^post7, (-x^post7+x^0 == 0 /\ __const_5^0-__const_5^post7 == 0), cost: 1 Second rule: l4 -> l1 : __const_5^0'=__const_5^post6, x^0'=x^post6, (0 == 0 /\ __const_5^0-__const_5^post6 == 0 /\ -__const_5^0+x^1 == 0), cost: 1 New rule: l5 -> l1 : __const_5^0'=__const_5^post6, x^0'=x^post6, (0 == 0 /\ __const_5^post7-__const_5^post6 == 0 /\ -__const_5^post7+x^1 == 0 /\ -x^post7+x^0 == 0 /\ __const_5^0-__const_5^post7 == 0), cost: 1 Applied deletion Removed the following rules: 5 6 Simplified Transitions Start location: l5 Program variables: x^0 8: l0 -> l1 : x^0'=1, x^0 <= 0, cost: 1 9: l0 -> l1 : x^0'=1+x^0, 1-x^0 <= 0, cost: 1 12: l1 -> l2 : T, cost: 1 10: l2 -> l3 : 4-x^0 <= 0, cost: 1 11: l2 -> l0 : -3+x^0 <= 0, cost: 1 13: l5 -> l1 : x^0'=x^post6, T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : __const_5^0'=__const_5^post1, x^0'=x^post1, (-1+x^post1 == 0 /\ -__const_5^post1+__const_5^0 == 0 /\ x^0 <= 0), cost: 1 New rule: l0 -> l1 : __const_5^0'=__const_5^0, x^0'=1, (0 == 0 /\ x^0 <= 0), cost: 1 propagated equality x^post1 = 1 propagated equality __const_5^post1 = __const_5^0 Simplified Guard Original rule: l0 -> l1 : __const_5^0'=__const_5^0, x^0'=1, (0 == 0 /\ x^0 <= 0), cost: 1 New rule: l0 -> l1 : __const_5^0'=__const_5^0, x^0'=1, x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : __const_5^0'=__const_5^0, x^0'=1, x^0 <= 0, cost: 1 New rule: l0 -> l1 : x^0'=1, x^0 <= 0, cost: 1 Propagated Equalities Original rule: l0 -> l1 : __const_5^0'=__const_5^post2, x^0'=x^post2, (1-x^0 <= 0 /\ -1+x^post2-x^0 == 0 /\ __const_5^0-__const_5^post2 == 0), cost: 1 New rule: l0 -> l1 : __const_5^0'=__const_5^0, x^0'=1+x^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 propagated equality x^post2 = 1+x^0 propagated equality __const_5^post2 = __const_5^0 Simplified Guard Original rule: l0 -> l1 : __const_5^0'=__const_5^0, x^0'=1+x^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 New rule: l0 -> l1 : __const_5^0'=__const_5^0, x^0'=1+x^0, 1-x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : __const_5^0'=__const_5^0, x^0'=1+x^0, 1-x^0 <= 0, cost: 1 New rule: l0 -> l1 : x^0'=1+x^0, 1-x^0 <= 0, cost: 1 Propagated Equalities Original rule: l2 -> l3 : __const_5^0'=__const_5^post3, x^0'=x^post3, (x^0-x^post3 == 0 /\ __const_5^0-__const_5^post3 == 0 /\ 4-x^0 <= 0), cost: 1 New rule: l2 -> l3 : __const_5^0'=__const_5^0, x^0'=x^0, (0 == 0 /\ 4-x^0 <= 0), cost: 1 propagated equality x^post3 = x^0 propagated equality __const_5^post3 = __const_5^0 Simplified Guard Original rule: l2 -> l3 : __const_5^0'=__const_5^0, x^0'=x^0, (0 == 0 /\ 4-x^0 <= 0), cost: 1 New rule: l2 -> l3 : __const_5^0'=__const_5^0, x^0'=x^0, 4-x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l2 -> l3 : __const_5^0'=__const_5^0, x^0'=x^0, 4-x^0 <= 0, cost: 1 New rule: l2 -> l3 : 4-x^0 <= 0, cost: 1 Propagated Equalities Original rule: l2 -> l0 : __const_5^0'=__const_5^post4, x^0'=x^post4, (-3+x^0 <= 0 /\ -x^post4+x^0 == 0 /\ -__const_5^post4+__const_5^0 == 0), cost: 1 New rule: l2 -> l0 : __const_5^0'=__const_5^0, x^0'=x^0, (0 == 0 /\ -3+x^0 <= 0), cost: 1 propagated equality x^post4 = x^0 propagated equality __const_5^post4 = __const_5^0 Simplified Guard Original rule: l2 -> l0 : __const_5^0'=__const_5^0, x^0'=x^0, (0 == 0 /\ -3+x^0 <= 0), cost: 1 New rule: l2 -> l0 : __const_5^0'=__const_5^0, x^0'=x^0, -3+x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l2 -> l0 : __const_5^0'=__const_5^0, x^0'=x^0, -3+x^0 <= 0, cost: 1 New rule: l2 -> l0 : -3+x^0 <= 0, cost: 1 Propagated Equalities Original rule: l1 -> l2 : __const_5^0'=__const_5^post5, x^0'=x^post5, (-x^post5+x^0 == 0 /\ __const_5^0-__const_5^post5 == 0), cost: 1 New rule: l1 -> l2 : __const_5^0'=__const_5^0, x^0'=x^0, 0 == 0, cost: 1 propagated equality x^post5 = x^0 propagated equality __const_5^post5 = __const_5^0 Simplified Guard Original rule: l1 -> l2 : __const_5^0'=__const_5^0, x^0'=x^0, 0 == 0, cost: 1 New rule: l1 -> l2 : __const_5^0'=__const_5^0, x^0'=x^0, T, cost: 1 Removed Trivial Updates Original rule: l1 -> l2 : __const_5^0'=__const_5^0, x^0'=x^0, T, cost: 1 New rule: l1 -> l2 : T, cost: 1 Propagated Equalities Original rule: l5 -> l1 : __const_5^0'=__const_5^post6, x^0'=x^post6, (0 == 0 /\ __const_5^post7-__const_5^post6 == 0 /\ -__const_5^post7+x^1 == 0 /\ -x^post7+x^0 == 0 /\ __const_5^0-__const_5^post7 == 0), cost: 1 New rule: l5 -> l1 : __const_5^0'=__const_5^post7, x^0'=x^post6, (0 == 0 /\ -__const_5^post7+x^1 == 0 /\ -x^post7+x^0 == 0 /\ __const_5^0-__const_5^post7 == 0), cost: 1 propagated equality __const_5^post6 = __const_5^post7 Propagated Equalities Original rule: l5 -> l1 : __const_5^0'=__const_5^post7, x^0'=x^post6, (0 == 0 /\ -__const_5^post7+x^1 == 0 /\ -x^post7+x^0 == 0 /\ __const_5^0-__const_5^post7 == 0), cost: 1 New rule: l5 -> l1 : __const_5^0'=__const_5^0, x^0'=x^post6, 0 == 0, cost: 1 propagated equality __const_5^post7 = x^1 propagated equality x^post7 = x^0 propagated equality x^1 = __const_5^0 Simplified Guard Original rule: l5 -> l1 : __const_5^0'=__const_5^0, x^0'=x^post6, 0 == 0, cost: 1 New rule: l5 -> l1 : __const_5^0'=__const_5^0, x^0'=x^post6, T, cost: 1 Removed Trivial Updates Original rule: l5 -> l1 : __const_5^0'=__const_5^0, x^0'=x^post6, T, cost: 1 New rule: l5 -> l1 : x^0'=x^post6, T, cost: 1 Step with 13 Trace 13[T] Blocked [{}, {}] Step with 12 Trace 13[T], 12[T] Blocked [{}, {}, {}] Step with 10 Trace 13[T], 12[T], 10[(4-x^0 <= 0)] Blocked [{}, {}, {}, {}] Backtrack Trace 13[T], 12[T] Blocked [{}, {}, {10[T]}] Step with 11 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}] Step with 8 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {}] Acceleration Failed marked recursive suffix as redundant Step with 12 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 12[T] Blocked [{}, {}, {10[T]}, {}, {}, {}] Acceleration Failed marked recursive suffix as redundant Step with 11 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 12[T], 11[(-3+x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {}, {}, {}] Acceleration Failed marked recursive suffix as redundant Step with 9 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 12[T], 11[(-3+x^0 <= 0)], 9[(1-x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {}, {}, {8[T]}, {}] Accelerate Start location: l5 Program variables: x^0 8: l0 -> l1 : x^0'=1, x^0 <= 0, cost: 1 9: l0 -> l1 : x^0'=1+x^0, 1-x^0 <= 0, cost: 1 12: l1 -> l2 : T, cost: 1 14: l1 -> l1 : x^0'=n+x^0, (-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0), cost: 1 10: l2 -> l3 : 4-x^0 <= 0, cost: 1 11: l2 -> l0 : -3+x^0 <= 0, cost: 1 13: l5 -> l1 : x^0'=x^post6, T, cost: 1 Loop Acceleration Original rule: l1 -> l1 : x^0'=1+x^0, (1-x^0 <= 0 /\ -3+x^0 <= 0), cost: 1 New rule: l1 -> l1 : x^0'=n+x^0, (-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0), cost: 1 3-x^0 >= 0 [0]: montonic decrease yields 4-n-x^0 >= 0 3-x^0 >= 0 [1]: eventual increase yields (3-x^0 >= 0 /\ 1 <= 0) -1+x^0 >= 0 [0]: monotonic increase yields -1+x^0 >= 0 Replacement map: {3-x^0 >= 0 -> 4-n-x^0 >= 0, -1+x^0 >= 0 -> -1+x^0 >= 0} Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)] Blocked [{}, {}, {10[T]}, {}, {}, {14[T]}] Acceleration Failed marked recursive suffix as redundant Step with 12 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T] Blocked [{}, {}, {10[T]}, {}, {}, {14[T]}, {}] Acceleration Failed marked recursive suffix as redundant Step with 11 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T], 11[(-3+x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {}, {14[T]}, {}, {}] Acceleration Failed marked recursive suffix as redundant Step with 9 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T], 11[(-3+x^0 <= 0)], 9[(1-x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {}, {14[T]}, {}, {}, {}] Covered Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T], 11[(-3+x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {}, {14[T]}, {}, {9[T]}] Backtrack Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T] Blocked [{}, {}, {10[T]}, {}, {}, {14[T]}, {11[T]}] Step with 10 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T], 10[(4-x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {}, {14[T]}, {11[T]}, {}] Backtrack Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T] Blocked [{}, {}, {10[T]}, {}, {}, {14[T]}, {10[T], 11[T]}] Backtrack Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)] Blocked [{}, {}, {10[T]}, {}, {}, {12[T], 14[T]}] Backtrack Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {14[T]}] Step with 12 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 12[T] Blocked [{}, {}, {10[T]}, {}, {14[T]}, {}] Step with 11 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 12[T], 11[(-3+x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {14[T]}, {10[T]}, {}] Step with 9 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 12[T], 11[(-3+x^0 <= 0)], 9[(1-x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {14[T]}, {10[T]}, {}, {}] Covered Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 12[T], 11[(-3+x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {14[T]}, {10[T]}, {9[T]}] Backtrack Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)], 12[T] Blocked [{}, {}, {10[T]}, {}, {14[T]}, {10[T], 11[T]}] Backtrack Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 8[(x^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {12[T], 14[T]}] Backtrack Trace 13[T], 12[T], 11[(-3+x^0 <= 0)] Blocked [{}, {}, {10[T]}, {8[T]}] Step with 9 Trace 13[T], 12[T], 11[(-3+x^0 <= 0)], 9[(1-x^0 <= 0)] Blocked [{}, {}, {10[T]}, {8[T]}, {}] Covered Trace 13[T], 12[T], 11[(-3+x^0 <= 0)] Blocked [{}, {}, {10[T]}, {8[T], 9[T]}] Backtrack Trace 13[T], 12[T] Blocked [{}, {}, {10[T], 11[T]}] Backtrack Trace 13[T] Blocked [{}, {12[T]}] Step with 14 Trace 13[T], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)] Blocked [{}, {12[T]}, {14[T]}] Step with 12 Trace 13[T], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T] Blocked [{}, {12[T]}, {14[T]}, {}] Step with 11 Trace 13[T], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T], 11[(-3+x^0 <= 0)] Blocked [{}, {12[T]}, {14[T]}, {}, {}] Step with 9 Trace 13[T], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T], 11[(-3+x^0 <= 0)], 9[(1-x^0 <= 0)] Blocked [{}, {12[T]}, {14[T]}, {}, {}, {}] Covered Trace 13[T], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T], 11[(-3+x^0 <= 0)] Blocked [{}, {12[T]}, {14[T]}, {}, {9[T]}] Backtrack Trace 13[T], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T] Blocked [{}, {12[T]}, {14[T]}, {11[T]}] Step with 10 Trace 13[T], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T], 10[(4-x^0 <= 0)] Blocked [{}, {12[T]}, {14[T]}, {11[T]}, {}] Backtrack Trace 13[T], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)], 12[T] Blocked [{}, {12[T]}, {14[T]}, {10[T], 11[T]}] Backtrack Trace 13[T], 14[(-1+n >= 0 /\ -1+x^0 >= 0 /\ 4-n-x^0 >= 0)] Blocked [{}, {12[T]}, {12[T], 14[T]}] Backtrack Trace 13[T] Blocked [{}, {12[T], 14[T]}] Backtrack Trace Blocked [{13[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b