unknown Initial ITS Start location: l4 Program variables: i4^0 tmp^0 0: l0 -> l1 : i4^0'=i4^post1, tmp^0'=tmp^post1, (tmp^0-tmp^post1 == 0 /\ -i4^post1+i4^0 == 0 /\ 10-i4^0 <= 0), cost: 1 1: l0 -> l2 : i4^0'=i4^post2, tmp^0'=tmp^post2, (-tmp^post2+tmp^0 == 0 /\ -9+i4^0 <= 0 /\ -1-i4^0+i4^post2 == 0), cost: 1 2: l2 -> l0 : i4^0'=i4^post3, tmp^0'=tmp^post3, (-i4^post3+i4^0 == 0 /\ tmp^0-tmp^post3 == 0), cost: 1 3: l3 -> l2 : i4^0'=i4^post4, tmp^0'=tmp^post4, (0 == 0 /\ i4^post4 == 0), cost: 1 4: l4 -> l3 : i4^0'=i4^post5, tmp^0'=tmp^post5, (i4^0-i4^post5 == 0 /\ -tmp^post5+tmp^0 == 0), cost: 1 Chained Linear Paths Start location: l4 Program variables: i4^0 tmp^0 0: l0 -> l1 : i4^0'=i4^post1, tmp^0'=tmp^post1, (tmp^0-tmp^post1 == 0 /\ -i4^post1+i4^0 == 0 /\ 10-i4^0 <= 0), cost: 1 1: l0 -> l2 : i4^0'=i4^post2, tmp^0'=tmp^post2, (-tmp^post2+tmp^0 == 0 /\ -9+i4^0 <= 0 /\ -1-i4^0+i4^post2 == 0), cost: 1 2: l2 -> l0 : i4^0'=i4^post3, tmp^0'=tmp^post3, (-i4^post3+i4^0 == 0 /\ tmp^0-tmp^post3 == 0), cost: 1 5: l4 -> l2 : i4^0'=i4^post4, tmp^0'=tmp^post4, (0 == 0 /\ i4^post4 == 0 /\ i4^0-i4^post5 == 0 /\ -tmp^post5+tmp^0 == 0), cost: 1 Eliminating location l3 by chaining: Applied chaining First rule: l4 -> l3 : i4^0'=i4^post5, tmp^0'=tmp^post5, (i4^0-i4^post5 == 0 /\ -tmp^post5+tmp^0 == 0), cost: 1 Second rule: l3 -> l2 : i4^0'=i4^post4, tmp^0'=tmp^post4, (0 == 0 /\ i4^post4 == 0), cost: 1 New rule: l4 -> l2 : i4^0'=i4^post4, tmp^0'=tmp^post4, (0 == 0 /\ i4^post4 == 0 /\ i4^0-i4^post5 == 0 /\ -tmp^post5+tmp^0 == 0), cost: 1 Applied deletion Removed the following rules: 3 4 Simplified Transitions Start location: l4 Program variables: i4^0 tmp^0 6: l0 -> l1 : 10-i4^0 <= 0, cost: 1 7: l0 -> l2 : i4^0'=1+i4^0, -9+i4^0 <= 0, cost: 1 8: l2 -> l0 : T, cost: 1 9: l4 -> l2 : i4^0'=0, tmp^0'=tmp^post4, T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : i4^0'=i4^post1, tmp^0'=tmp^post1, (tmp^0-tmp^post1 == 0 /\ -i4^post1+i4^0 == 0 /\ 10-i4^0 <= 0), cost: 1 New rule: l0 -> l1 : i4^0'=i4^0, tmp^0'=tmp^0, (0 == 0 /\ 10-i4^0 <= 0), cost: 1 propagated equality tmp^post1 = tmp^0 propagated equality i4^post1 = i4^0 Simplified Guard Original rule: l0 -> l1 : i4^0'=i4^0, tmp^0'=tmp^0, (0 == 0 /\ 10-i4^0 <= 0), cost: 1 New rule: l0 -> l1 : i4^0'=i4^0, tmp^0'=tmp^0, 10-i4^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : i4^0'=i4^0, tmp^0'=tmp^0, 10-i4^0 <= 0, cost: 1 New rule: l0 -> l1 : 10-i4^0 <= 0, cost: 1 Propagated Equalities Original rule: l0 -> l2 : i4^0'=i4^post2, tmp^0'=tmp^post2, (-tmp^post2+tmp^0 == 0 /\ -9+i4^0 <= 0 /\ -1-i4^0+i4^post2 == 0), cost: 1 New rule: l0 -> l2 : i4^0'=1+i4^0, tmp^0'=tmp^0, (0 == 0 /\ -9+i4^0 <= 0), cost: 1 propagated equality tmp^post2 = tmp^0 propagated equality i4^post2 = 1+i4^0 Simplified Guard Original rule: l0 -> l2 : i4^0'=1+i4^0, tmp^0'=tmp^0, (0 == 0 /\ -9+i4^0 <= 0), cost: 1 New rule: l0 -> l2 : i4^0'=1+i4^0, tmp^0'=tmp^0, -9+i4^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l2 : i4^0'=1+i4^0, tmp^0'=tmp^0, -9+i4^0 <= 0, cost: 1 New rule: l0 -> l2 : i4^0'=1+i4^0, -9+i4^0 <= 0, cost: 1 Propagated Equalities Original rule: l2 -> l0 : i4^0'=i4^post3, tmp^0'=tmp^post3, (-i4^post3+i4^0 == 0 /\ tmp^0-tmp^post3 == 0), cost: 1 New rule: l2 -> l0 : i4^0'=i4^0, tmp^0'=tmp^0, 0 == 0, cost: 1 propagated equality i4^post3 = i4^0 propagated equality tmp^post3 = tmp^0 Simplified Guard Original rule: l2 -> l0 : i4^0'=i4^0, tmp^0'=tmp^0, 0 == 0, cost: 1 New rule: l2 -> l0 : i4^0'=i4^0, tmp^0'=tmp^0, T, cost: 1 Removed Trivial Updates Original rule: l2 -> l0 : i4^0'=i4^0, tmp^0'=tmp^0, T, cost: 1 New rule: l2 -> l0 : T, cost: 1 Propagated Equalities Original rule: l4 -> l2 : i4^0'=i4^post4, tmp^0'=tmp^post4, (0 == 0 /\ i4^post4 == 0 /\ i4^0-i4^post5 == 0 /\ -tmp^post5+tmp^0 == 0), cost: 1 New rule: l4 -> l2 : i4^0'=0, tmp^0'=tmp^post4, (0 == 0 /\ i4^0-i4^post5 == 0 /\ -tmp^post5+tmp^0 == 0), cost: 1 propagated equality i4^post4 = 0 Propagated Equalities Original rule: l4 -> l2 : i4^0'=0, tmp^0'=tmp^post4, (0 == 0 /\ i4^0-i4^post5 == 0 /\ -tmp^post5+tmp^0 == 0), cost: 1 New rule: l4 -> l2 : i4^0'=0, tmp^0'=tmp^post4, 0 == 0, cost: 1 propagated equality i4^post5 = i4^0 propagated equality tmp^post5 = tmp^0 Simplified Guard Original rule: l4 -> l2 : i4^0'=0, tmp^0'=tmp^post4, 0 == 0, cost: 1 New rule: l4 -> l2 : i4^0'=0, tmp^0'=tmp^post4, T, cost: 1 Step with 9 Trace 9[T] Blocked [{}, {}] Step with 8 Trace 9[T], 8[T] Blocked [{}, {}, {}] Step with 7 Trace 9[T], 8[T], 7[(-9+i4^0 <= 0)] Blocked [{}, {}, {6[T]}, {}] Accelerate Start location: l4 Program variables: i4^0 tmp^0 6: l0 -> l1 : 10-i4^0 <= 0, cost: 1 7: l0 -> l2 : i4^0'=1+i4^0, -9+i4^0 <= 0, cost: 1 8: l2 -> l0 : T, cost: 1 10: l2 -> l2 : i4^0'=i4^0+n, (10-i4^0-n >= 0 /\ -1+n >= 0), cost: 1 9: l4 -> l2 : i4^0'=0, tmp^0'=tmp^post4, T, cost: 1 Loop Acceleration Original rule: l2 -> l2 : i4^0'=1+i4^0, -9+i4^0 <= 0, cost: 1 New rule: l2 -> l2 : i4^0'=i4^0+n, (10-i4^0-n >= 0 /\ -1+n >= 0), cost: 1 9-i4^0 >= 0 [0]: montonic decrease yields 10-i4^0-n >= 0 9-i4^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ 9-i4^0 >= 0) Replacement map: {9-i4^0 >= 0 -> 10-i4^0-n >= 0} Trace 9[T], 10[(10-i4^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {}, {10[T]}] Step with 8 Trace 9[T], 10[(10-i4^0-n >= 0 /\ -1+n >= 0)], 8[T] Blocked [{}, {}, {10[T]}, {}] Step with 7 Trace 9[T], 10[(10-i4^0-n >= 0 /\ -1+n >= 0)], 8[T], 7[(-9+i4^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {}] Covered Trace 9[T], 10[(10-i4^0-n >= 0 /\ -1+n >= 0)], 8[T] Blocked [{}, {}, {10[T]}, {7[T]}] Step with 6 Trace 9[T], 10[(10-i4^0-n >= 0 /\ -1+n >= 0)], 8[T], 6[(10-i4^0 <= 0)] Blocked [{}, {}, {10[T]}, {7[T]}, {}] Backtrack Trace 9[T], 10[(10-i4^0-n >= 0 /\ -1+n >= 0)], 8[T] Blocked [{}, {}, {10[T]}, {6[T], 7[T]}] Backtrack Trace 9[T], 10[(10-i4^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {}, {8[T], 10[T]}] Backtrack Trace 9[T] Blocked [{}, {10[T]}] Step with 8 Trace 9[T], 8[T] Blocked [{}, {10[T]}, {}] Step with 7 Trace 9[T], 8[T], 7[(-9+i4^0 <= 0)] Blocked [{}, {10[T]}, {6[T]}, {}] Covered Trace 9[T], 8[T] Blocked [{}, {10[T]}, {6[T], 7[T]}] Backtrack Trace 9[T] Blocked [{}, {8[T], 10[T]}] Backtrack Trace Blocked [{9[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b