unknown Initial ITS Start location: l4 Program variables: result_4^0 x_5^0 y_6^0 0: l0 -> l1 : result_4^0'=result_4^post1, x_5^0'=x_5^post1, y_6^0'=y_6^post1, (0 == 0 /\ -y_6^post1+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ -x_5^post1+x_5^0 == 0), cost: 1 1: l0 -> l2 : result_4^0'=result_4^post2, x_5^0'=x_5^post2, y_6^0'=y_6^post2, (1+x_5^0-y_6^0 <= 0 /\ result_4^0-result_4^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -1+x_5^post2-x_5^0 == 0), cost: 1 2: l2 -> l0 : result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, (-x_5^post3+x_5^0 == 0 /\ result_4^0-result_4^post3 == 0 /\ -y_6^post3+y_6^0 == 0), cost: 1 3: l3 -> l0 : result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, (-x_5^post4+x_5^0 == 0 /\ -y_6^post4+y_6^0 == 0 /\ result_4^0-result_4^post4 == 0), cost: 1 4: l4 -> l3 : result_4^0'=result_4^post5, x_5^0'=x_5^post5, y_6^0'=y_6^post5, (x_5^0-x_5^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ result_4^0-result_4^post5 == 0), cost: 1 Chained Linear Paths Start location: l4 Program variables: result_4^0 x_5^0 y_6^0 0: l0 -> l1 : result_4^0'=result_4^post1, x_5^0'=x_5^post1, y_6^0'=y_6^post1, (0 == 0 /\ -y_6^post1+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ -x_5^post1+x_5^0 == 0), cost: 1 6: l0 -> l0 : result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, (x_5^post2-x_5^post3 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ y_6^post2-y_6^post3 == 0 /\ result_4^0-result_4^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -1+x_5^post2-x_5^0 == 0 /\ result_4^post2-result_4^post3 == 0), cost: 1 5: l4 -> l0 : result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, (x_5^0-x_5^post5 == 0 /\ result_4^post5-result_4^post4 == 0 /\ y_6^post5-y_6^post4 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -x_5^post4+x_5^post5 == 0 /\ result_4^0-result_4^post5 == 0), cost: 1 Eliminating location l3 by chaining: Applied chaining First rule: l4 -> l3 : result_4^0'=result_4^post5, x_5^0'=x_5^post5, y_6^0'=y_6^post5, (x_5^0-x_5^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ result_4^0-result_4^post5 == 0), cost: 1 Second rule: l3 -> l0 : result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, (-x_5^post4+x_5^0 == 0 /\ -y_6^post4+y_6^0 == 0 /\ result_4^0-result_4^post4 == 0), cost: 1 New rule: l4 -> l0 : result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, (x_5^0-x_5^post5 == 0 /\ result_4^post5-result_4^post4 == 0 /\ y_6^post5-y_6^post4 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -x_5^post4+x_5^post5 == 0 /\ result_4^0-result_4^post5 == 0), cost: 1 Applied deletion Removed the following rules: 3 4 Eliminating location l2 by chaining: Applied chaining First rule: l0 -> l2 : result_4^0'=result_4^post2, x_5^0'=x_5^post2, y_6^0'=y_6^post2, (1+x_5^0-y_6^0 <= 0 /\ result_4^0-result_4^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -1+x_5^post2-x_5^0 == 0), cost: 1 Second rule: l2 -> l0 : result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, (-x_5^post3+x_5^0 == 0 /\ result_4^0-result_4^post3 == 0 /\ -y_6^post3+y_6^0 == 0), cost: 1 New rule: l0 -> l0 : result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, (x_5^post2-x_5^post3 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ y_6^post2-y_6^post3 == 0 /\ result_4^0-result_4^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -1+x_5^post2-x_5^0 == 0 /\ result_4^post2-result_4^post3 == 0), cost: 1 Applied deletion Removed the following rules: 1 2 Simplified Transitions Start location: l4 Program variables: result_4^0 x_5^0 y_6^0 7: l0 -> l1 : result_4^0'=result_4^post1, -x_5^0+y_6^0 <= 0, cost: 1 9: l0 -> l0 : x_5^0'=1+x_5^0, 1+x_5^0-y_6^0 <= 0, cost: 1 8: l4 -> l0 : T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : result_4^0'=result_4^post1, x_5^0'=x_5^post1, y_6^0'=y_6^post1, (0 == 0 /\ -y_6^post1+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ -x_5^post1+x_5^0 == 0), cost: 1 New rule: l0 -> l1 : result_4^0'=result_4^post1, x_5^0'=x_5^0, y_6^0'=y_6^0, (0 == 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 propagated equality y_6^post1 = y_6^0 propagated equality x_5^post1 = x_5^0 Simplified Guard Original rule: l0 -> l1 : result_4^0'=result_4^post1, x_5^0'=x_5^0, y_6^0'=y_6^0, (0 == 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 New rule: l0 -> l1 : result_4^0'=result_4^post1, x_5^0'=x_5^0, y_6^0'=y_6^0, -x_5^0+y_6^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : result_4^0'=result_4^post1, x_5^0'=x_5^0, y_6^0'=y_6^0, -x_5^0+y_6^0 <= 0, cost: 1 New rule: l0 -> l1 : result_4^0'=result_4^post1, -x_5^0+y_6^0 <= 0, cost: 1 Propagated Equalities Original rule: l4 -> l0 : result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, (x_5^0-x_5^post5 == 0 /\ result_4^post5-result_4^post4 == 0 /\ y_6^post5-y_6^post4 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -x_5^post4+x_5^post5 == 0 /\ result_4^0-result_4^post5 == 0), cost: 1 New rule: l4 -> l0 : result_4^0'=result_4^post5, x_5^0'=x_5^post5, y_6^0'=y_6^post5, (0 == 0 /\ x_5^0-x_5^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ result_4^0-result_4^post5 == 0), cost: 1 propagated equality result_4^post4 = result_4^post5 propagated equality y_6^post4 = y_6^post5 propagated equality x_5^post4 = x_5^post5 Propagated Equalities Original rule: l4 -> l0 : result_4^0'=result_4^post5, x_5^0'=x_5^post5, y_6^0'=y_6^post5, (0 == 0 /\ x_5^0-x_5^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ result_4^0-result_4^post5 == 0), cost: 1 New rule: l4 -> l0 : result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, 0 == 0, cost: 1 propagated equality x_5^post5 = x_5^0 propagated equality y_6^post5 = y_6^0 propagated equality result_4^post5 = result_4^0 Simplified Guard Original rule: l4 -> l0 : result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, 0 == 0, cost: 1 New rule: l4 -> l0 : result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, T, cost: 1 Removed Trivial Updates Original rule: l4 -> l0 : result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, T, cost: 1 New rule: l4 -> l0 : T, cost: 1 Propagated Equalities Original rule: l0 -> l0 : result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, (x_5^post2-x_5^post3 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ y_6^post2-y_6^post3 == 0 /\ result_4^0-result_4^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -1+x_5^post2-x_5^0 == 0 /\ result_4^post2-result_4^post3 == 0), cost: 1 New rule: l0 -> l0 : result_4^0'=result_4^post2, x_5^0'=x_5^post2, y_6^0'=y_6^post2, (0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ result_4^0-result_4^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -1+x_5^post2-x_5^0 == 0), cost: 1 propagated equality x_5^post3 = x_5^post2 propagated equality y_6^post3 = y_6^post2 propagated equality result_4^post3 = result_4^post2 Propagated Equalities Original rule: l0 -> l0 : result_4^0'=result_4^post2, x_5^0'=x_5^post2, y_6^0'=y_6^post2, (0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ result_4^0-result_4^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -1+x_5^post2-x_5^0 == 0), cost: 1 New rule: l0 -> l0 : result_4^0'=result_4^0, x_5^0'=1+x_5^0, y_6^0'=y_6^0, (0 == 0 /\ 1+x_5^0-y_6^0 <= 0), cost: 1 propagated equality result_4^post2 = result_4^0 propagated equality y_6^post2 = y_6^0 propagated equality x_5^post2 = 1+x_5^0 Simplified Guard Original rule: l0 -> l0 : result_4^0'=result_4^0, x_5^0'=1+x_5^0, y_6^0'=y_6^0, (0 == 0 /\ 1+x_5^0-y_6^0 <= 0), cost: 1 New rule: l0 -> l0 : result_4^0'=result_4^0, x_5^0'=1+x_5^0, y_6^0'=y_6^0, 1+x_5^0-y_6^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l0 : result_4^0'=result_4^0, x_5^0'=1+x_5^0, y_6^0'=y_6^0, 1+x_5^0-y_6^0 <= 0, cost: 1 New rule: l0 -> l0 : x_5^0'=1+x_5^0, 1+x_5^0-y_6^0 <= 0, cost: 1 Step with 8 Trace 8[T] Blocked [{}, {}] Step with 7 Trace 8[T], 7[(-x_5^0+y_6^0 <= 0)] Blocked [{}, {}, {}] Backtrack Trace 8[T] Blocked [{}, {7[T]}] Step with 9 Trace 8[T], 9[(1+x_5^0-y_6^0 <= 0)] Blocked [{}, {7[T]}, {}] Accelerate Start location: l4 Program variables: result_4^0 x_5^0 y_6^0 7: l0 -> l1 : result_4^0'=result_4^post1, -x_5^0+y_6^0 <= 0, cost: 1 9: l0 -> l0 : x_5^0'=1+x_5^0, 1+x_5^0-y_6^0 <= 0, cost: 1 10: l0 -> l0 : x_5^0'=n+x_5^0, (-1+n >= 0 /\ -n-x_5^0+y_6^0 >= 0), cost: 1 8: l4 -> l0 : T, cost: 1 Loop Acceleration Original rule: l0 -> l0 : x_5^0'=1+x_5^0, (1+x_5^0-y_6^0 <= 0), cost: 1 New rule: l0 -> l0 : x_5^0'=n+x_5^0, (-1+n >= 0 /\ -n-x_5^0+y_6^0 >= 0), cost: 1 -1-x_5^0+y_6^0 >= 0 [0]: montonic decrease yields -n-x_5^0+y_6^0 >= 0 -1-x_5^0+y_6^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1-x_5^0+y_6^0 >= 0) Replacement map: {-1-x_5^0+y_6^0 >= 0 -> -n-x_5^0+y_6^0 >= 0} Trace 8[T], 10[(-1+n >= 0 /\ -n-x_5^0+y_6^0 >= 0)] Blocked [{}, {7[T]}, {9[T], 10[T]}] Step with 7 Trace 8[T], 10[(-1+n >= 0 /\ -n-x_5^0+y_6^0 >= 0)], 7[(-x_5^0+y_6^0 <= 0)] Blocked [{}, {7[T]}, {9[T], 10[T]}, {}] Backtrack Trace 8[T], 10[(-1+n >= 0 /\ -n-x_5^0+y_6^0 >= 0)] Blocked [{}, {7[T]}, {7[T], 9[T], 10[T]}] Backtrack Trace 8[T] Blocked [{}, {7[T], 10[T]}] Step with 9 Trace 8[T], 9[(1+x_5^0-y_6^0 <= 0)] Blocked [{}, {7[T], 10[T]}, {}] Covered Trace 8[T] Blocked [{}, {7[T], 9[T], 10[T]}] Backtrack Trace Blocked [{8[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b