unknown Initial ITS Start location: l4 Program variables: b_7^0 result_4^0 x_5^0 y_6^0 0: l0 -> l1 : b_7^0'=b_7^post1, result_4^0'=result_4^post1, x_5^0'=x_5^post1, y_6^0'=y_6^post1, (1+y_6^post1-y_6^0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ -x_5^post1+x_5^0 == 0 /\ result_4^0-result_4^post1 == 0 /\ b_7^post1 == 0 /\ 1-b_7^0 <= 0), cost: 1 1: l0 -> l2 : b_7^0'=b_7^post2, result_4^0'=result_4^post2, x_5^0'=x_5^post2, y_6^0'=y_6^post2, (0 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ b_7^0-b_7^post2 == 0 /\ -x_5^post2+x_5^0 == 0), cost: 1 3: l1 -> l0 : b_7^0'=b_7^post4, result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, (-y_6^post4+y_6^0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0 /\ -1+b_7^post4 == 0 /\ result_4^0-result_4^post4 == 0 /\ -1-x_5^0+x_5^post4 == 0), cost: 1 4: l1 -> l2 : b_7^0'=b_7^post5, result_4^0'=result_4^post5, x_5^0'=x_5^post5, y_6^0'=y_6^post5, (0 == 0 /\ b_7^0-b_7^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ -x_5^post5+x_5^0 == 0), cost: 1 2: l3 -> l1 : b_7^0'=b_7^post3, result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, (b_7^post3 == 0 /\ -y_6^post3+y_6^0 == 0 /\ result_4^0-result_4^post3 == 0 /\ -x_5^post3+x_5^0 == 0), cost: 1 5: l4 -> l3 : b_7^0'=b_7^post6, result_4^0'=result_4^post6, x_5^0'=x_5^post6, y_6^0'=y_6^post6, (b_7^0-b_7^post6 == 0 /\ result_4^0-result_4^post6 == 0 /\ -x_5^post6+x_5^0 == 0 /\ -y_6^post6+y_6^0 == 0), cost: 1 Chained Linear Paths Start location: l4 Program variables: b_7^0 result_4^0 x_5^0 y_6^0 0: l0 -> l1 : b_7^0'=b_7^post1, result_4^0'=result_4^post1, x_5^0'=x_5^post1, y_6^0'=y_6^post1, (1+y_6^post1-y_6^0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ -x_5^post1+x_5^0 == 0 /\ result_4^0-result_4^post1 == 0 /\ b_7^post1 == 0 /\ 1-b_7^0 <= 0), cost: 1 1: l0 -> l2 : b_7^0'=b_7^post2, result_4^0'=result_4^post2, x_5^0'=x_5^post2, y_6^0'=y_6^post2, (0 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ b_7^0-b_7^post2 == 0 /\ -x_5^post2+x_5^0 == 0), cost: 1 3: l1 -> l0 : b_7^0'=b_7^post4, result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, (-y_6^post4+y_6^0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0 /\ -1+b_7^post4 == 0 /\ result_4^0-result_4^post4 == 0 /\ -1-x_5^0+x_5^post4 == 0), cost: 1 4: l1 -> l2 : b_7^0'=b_7^post5, result_4^0'=result_4^post5, x_5^0'=x_5^post5, y_6^0'=y_6^post5, (0 == 0 /\ b_7^0-b_7^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ -x_5^post5+x_5^0 == 0), cost: 1 6: l4 -> l1 : b_7^0'=b_7^post3, result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, (b_7^post3 == 0 /\ b_7^0-b_7^post6 == 0 /\ x_5^post6-x_5^post3 == 0 /\ result_4^0-result_4^post6 == 0 /\ -x_5^post6+x_5^0 == 0 /\ -result_4^post3+result_4^post6 == 0 /\ y_6^post6-y_6^post3 == 0 /\ -y_6^post6+y_6^0 == 0), cost: 1 Eliminating location l3 by chaining: Applied chaining First rule: l4 -> l3 : b_7^0'=b_7^post6, result_4^0'=result_4^post6, x_5^0'=x_5^post6, y_6^0'=y_6^post6, (b_7^0-b_7^post6 == 0 /\ result_4^0-result_4^post6 == 0 /\ -x_5^post6+x_5^0 == 0 /\ -y_6^post6+y_6^0 == 0), cost: 1 Second rule: l3 -> l1 : b_7^0'=b_7^post3, result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, (b_7^post3 == 0 /\ -y_6^post3+y_6^0 == 0 /\ result_4^0-result_4^post3 == 0 /\ -x_5^post3+x_5^0 == 0), cost: 1 New rule: l4 -> l1 : b_7^0'=b_7^post3, result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, (b_7^post3 == 0 /\ b_7^0-b_7^post6 == 0 /\ x_5^post6-x_5^post3 == 0 /\ result_4^0-result_4^post6 == 0 /\ -x_5^post6+x_5^0 == 0 /\ -result_4^post3+result_4^post6 == 0 /\ y_6^post6-y_6^post3 == 0 /\ -y_6^post6+y_6^0 == 0), cost: 1 Applied deletion Removed the following rules: 2 5 Simplified Transitions Start location: l4 Program variables: b_7^0 result_4^0 x_5^0 y_6^0 7: l0 -> l1 : b_7^0'=0, y_6^0'=-1+y_6^0, (1+x_5^0-y_6^0 <= 0 /\ 1-b_7^0 <= 0), cost: 1 8: l0 -> l2 : result_4^0'=result_4^post2, -x_5^0+y_6^0 <= 0, cost: 1 9: l1 -> l0 : b_7^0'=1, x_5^0'=1+x_5^0, (1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0), cost: 1 10: l1 -> l2 : result_4^0'=result_4^post5, -x_5^0+y_6^0 <= 0, cost: 1 11: l4 -> l1 : b_7^0'=0, T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : b_7^0'=b_7^post1, result_4^0'=result_4^post1, x_5^0'=x_5^post1, y_6^0'=y_6^post1, (1+y_6^post1-y_6^0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ -x_5^post1+x_5^0 == 0 /\ result_4^0-result_4^post1 == 0 /\ b_7^post1 == 0 /\ 1-b_7^0 <= 0), cost: 1 New rule: l0 -> l1 : b_7^0'=0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=-1+y_6^0, (0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ 1-b_7^0 <= 0), cost: 1 propagated equality y_6^post1 = -1+y_6^0 propagated equality x_5^post1 = x_5^0 propagated equality result_4^post1 = result_4^0 propagated equality b_7^post1 = 0 Simplified Guard Original rule: l0 -> l1 : b_7^0'=0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=-1+y_6^0, (0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ 1-b_7^0 <= 0), cost: 1 New rule: l0 -> l1 : b_7^0'=0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=-1+y_6^0, (1+x_5^0-y_6^0 <= 0 /\ 1-b_7^0 <= 0), cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : b_7^0'=0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=-1+y_6^0, (1+x_5^0-y_6^0 <= 0 /\ 1-b_7^0 <= 0), cost: 1 New rule: l0 -> l1 : b_7^0'=0, y_6^0'=-1+y_6^0, (1+x_5^0-y_6^0 <= 0 /\ 1-b_7^0 <= 0), cost: 1 Propagated Equalities Original rule: l0 -> l2 : b_7^0'=b_7^post2, result_4^0'=result_4^post2, x_5^0'=x_5^post2, y_6^0'=y_6^post2, (0 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ b_7^0-b_7^post2 == 0 /\ -x_5^post2+x_5^0 == 0), cost: 1 New rule: l0 -> l2 : b_7^0'=b_7^0, result_4^0'=result_4^post2, x_5^0'=x_5^0, y_6^0'=y_6^0, (0 == 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 propagated equality y_6^post2 = y_6^0 propagated equality b_7^post2 = b_7^0 propagated equality x_5^post2 = x_5^0 Simplified Guard Original rule: l0 -> l2 : b_7^0'=b_7^0, result_4^0'=result_4^post2, x_5^0'=x_5^0, y_6^0'=y_6^0, (0 == 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 New rule: l0 -> l2 : b_7^0'=b_7^0, result_4^0'=result_4^post2, x_5^0'=x_5^0, y_6^0'=y_6^0, -x_5^0+y_6^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l2 : b_7^0'=b_7^0, result_4^0'=result_4^post2, x_5^0'=x_5^0, y_6^0'=y_6^0, -x_5^0+y_6^0 <= 0, cost: 1 New rule: l0 -> l2 : result_4^0'=result_4^post2, -x_5^0+y_6^0 <= 0, cost: 1 Propagated Equalities Original rule: l1 -> l0 : b_7^0'=b_7^post4, result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, (-y_6^post4+y_6^0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0 /\ -1+b_7^post4 == 0 /\ result_4^0-result_4^post4 == 0 /\ -1-x_5^0+x_5^post4 == 0), cost: 1 New rule: l1 -> l0 : b_7^0'=1, result_4^0'=result_4^0, x_5^0'=1+x_5^0, y_6^0'=y_6^0, (0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0), cost: 1 propagated equality y_6^post4 = y_6^0 propagated equality b_7^post4 = 1 propagated equality result_4^post4 = result_4^0 propagated equality x_5^post4 = 1+x_5^0 Simplified Guard Original rule: l1 -> l0 : b_7^0'=1, result_4^0'=result_4^0, x_5^0'=1+x_5^0, y_6^0'=y_6^0, (0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0), cost: 1 New rule: l1 -> l0 : b_7^0'=1, result_4^0'=result_4^0, x_5^0'=1+x_5^0, y_6^0'=y_6^0, (1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0), cost: 1 Removed Trivial Updates Original rule: l1 -> l0 : b_7^0'=1, result_4^0'=result_4^0, x_5^0'=1+x_5^0, y_6^0'=y_6^0, (1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0), cost: 1 New rule: l1 -> l0 : b_7^0'=1, x_5^0'=1+x_5^0, (1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0), cost: 1 Propagated Equalities Original rule: l1 -> l2 : b_7^0'=b_7^post5, result_4^0'=result_4^post5, x_5^0'=x_5^post5, y_6^0'=y_6^post5, (0 == 0 /\ b_7^0-b_7^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ -x_5^post5+x_5^0 == 0), cost: 1 New rule: l1 -> l2 : b_7^0'=b_7^0, result_4^0'=result_4^post5, x_5^0'=x_5^0, y_6^0'=y_6^0, (0 == 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 propagated equality b_7^post5 = b_7^0 propagated equality y_6^post5 = y_6^0 propagated equality x_5^post5 = x_5^0 Simplified Guard Original rule: l1 -> l2 : b_7^0'=b_7^0, result_4^0'=result_4^post5, x_5^0'=x_5^0, y_6^0'=y_6^0, (0 == 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 New rule: l1 -> l2 : b_7^0'=b_7^0, result_4^0'=result_4^post5, x_5^0'=x_5^0, y_6^0'=y_6^0, -x_5^0+y_6^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l1 -> l2 : b_7^0'=b_7^0, result_4^0'=result_4^post5, x_5^0'=x_5^0, y_6^0'=y_6^0, -x_5^0+y_6^0 <= 0, cost: 1 New rule: l1 -> l2 : result_4^0'=result_4^post5, -x_5^0+y_6^0 <= 0, cost: 1 Propagated Equalities Original rule: l4 -> l1 : b_7^0'=b_7^post3, result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, (b_7^post3 == 0 /\ b_7^0-b_7^post6 == 0 /\ x_5^post6-x_5^post3 == 0 /\ result_4^0-result_4^post6 == 0 /\ -x_5^post6+x_5^0 == 0 /\ -result_4^post3+result_4^post6 == 0 /\ y_6^post6-y_6^post3 == 0 /\ -y_6^post6+y_6^0 == 0), cost: 1 New rule: l4 -> l1 : b_7^0'=0, result_4^0'=result_4^post6, x_5^0'=x_5^post6, y_6^0'=y_6^post6, (0 == 0 /\ b_7^0-b_7^post6 == 0 /\ result_4^0-result_4^post6 == 0 /\ -x_5^post6+x_5^0 == 0 /\ -y_6^post6+y_6^0 == 0), cost: 1 propagated equality b_7^post3 = 0 propagated equality x_5^post3 = x_5^post6 propagated equality result_4^post3 = result_4^post6 propagated equality y_6^post3 = y_6^post6 Propagated Equalities Original rule: l4 -> l1 : b_7^0'=0, result_4^0'=result_4^post6, x_5^0'=x_5^post6, y_6^0'=y_6^post6, (0 == 0 /\ b_7^0-b_7^post6 == 0 /\ result_4^0-result_4^post6 == 0 /\ -x_5^post6+x_5^0 == 0 /\ -y_6^post6+y_6^0 == 0), cost: 1 New rule: l4 -> l1 : b_7^0'=0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, 0 == 0, cost: 1 propagated equality b_7^post6 = b_7^0 propagated equality result_4^post6 = result_4^0 propagated equality x_5^post6 = x_5^0 propagated equality y_6^post6 = y_6^0 Simplified Guard Original rule: l4 -> l1 : b_7^0'=0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, 0 == 0, cost: 1 New rule: l4 -> l1 : b_7^0'=0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, T, cost: 1 Removed Trivial Updates Original rule: l4 -> l1 : b_7^0'=0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, T, cost: 1 New rule: l4 -> l1 : b_7^0'=0, T, cost: 1 Step with 11 Trace 11[T] Blocked [{}, {}] Step with 10 Trace 11[T], 10[(-x_5^0+y_6^0 <= 0)] Blocked [{}, {}, {}] Backtrack Trace 11[T] Blocked [{}, {10[T]}] Step with 9 Trace 11[T], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)] Blocked [{}, {10[T]}, {}] Step with 8 Trace 11[T], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)], 8[(-x_5^0+y_6^0 <= 0)] Blocked [{}, {10[T]}, {}, {}] Backtrack Trace 11[T], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)] Blocked [{}, {10[T]}, {8[T]}] Step with 7 Trace 11[T], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)], 7[(1+x_5^0-y_6^0 <= 0 /\ 1-b_7^0 <= 0)] Blocked [{}, {10[T]}, {8[T]}, {}] Accelerate Start location: l4 Program variables: b_7^0 result_4^0 x_5^0 y_6^0 7: l0 -> l1 : b_7^0'=0, y_6^0'=-1+y_6^0, (1+x_5^0-y_6^0 <= 0 /\ 1-b_7^0 <= 0), cost: 1 8: l0 -> l2 : result_4^0'=result_4^post2, -x_5^0+y_6^0 <= 0, cost: 1 9: l1 -> l0 : b_7^0'=1, x_5^0'=1+x_5^0, (1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0), cost: 1 10: l1 -> l2 : result_4^0'=result_4^post5, -x_5^0+y_6^0 <= 0, cost: 1 12: l1 -> l1 : b_7^0'=0, x_5^0'=x_5^0+n, y_6^0'=-n+y_6^0, (-x_5^0-2*n+y_6^0 >= 0 /\ -1+n >= 0 /\ 1-x_5^0-2*n+y_6^0 >= 0 /\ -b_7^0 >= 0), cost: 1 11: l4 -> l1 : b_7^0'=0, T, cost: 1 Loop Acceleration Original rule: l1 -> l1 : b_7^0'=0, x_5^0'=1+x_5^0, y_6^0'=-1+y_6^0, (1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0 /\ 2+x_5^0-y_6^0 <= 0), cost: 1 New rule: l1 -> l1 : b_7^0'=0, x_5^0'=x_5^0+n, y_6^0'=-n+y_6^0, (-x_5^0-2*n+y_6^0 >= 0 /\ -1+n >= 0 /\ 1-x_5^0-2*n+y_6^0 >= 0 /\ -b_7^0 >= 0), cost: 1 -2-x_5^0+y_6^0 >= 0 [0]: montonic decrease yields -x_5^0-2*n+y_6^0 >= 0 -2-x_5^0+y_6^0 >= 0 [1]: eventual increase yields (-2-x_5^0+y_6^0 >= 0 /\ 2 <= 0) -b_7^0 >= 0 [0]: monotonic increase yields -b_7^0 >= 0 -1-x_5^0+y_6^0 >= 0 [0]: montonic decrease yields 1-x_5^0-2*n+y_6^0 >= 0, dependencies: -2-x_5^0+y_6^0 >= 0 -1-x_5^0+y_6^0 >= 0 [1]: eventual increase yields (2 <= 0 /\ -1-x_5^0+y_6^0 >= 0) Replacement map: {-2-x_5^0+y_6^0 >= 0 -> -x_5^0-2*n+y_6^0 >= 0, -b_7^0 >= 0 -> -b_7^0 >= 0, -1-x_5^0+y_6^0 >= 0 -> 1-x_5^0-2*n+y_6^0 >= 0} Trace 11[T], 12[(-x_5^0-2*n+y_6^0 >= 0 /\ -1+n >= 0 /\ 1-x_5^0-2*n+y_6^0 >= 0 /\ -b_7^0 >= 0)] Blocked [{}, {10[T]}, {12[T]}] Step with 10 Trace 11[T], 12[(-x_5^0-2*n+y_6^0 >= 0 /\ -1+n >= 0 /\ 1-x_5^0-2*n+y_6^0 >= 0 /\ -b_7^0 >= 0)], 10[(-x_5^0+y_6^0 <= 0)] Blocked [{}, {10[T]}, {12[T]}, {}] Backtrack Trace 11[T], 12[(-x_5^0-2*n+y_6^0 >= 0 /\ -1+n >= 0 /\ 1-x_5^0-2*n+y_6^0 >= 0 /\ -b_7^0 >= 0)] Blocked [{}, {10[T]}, {10[T], 12[T]}] Step with 9 Trace 11[T], 12[(-x_5^0-2*n+y_6^0 >= 0 /\ -1+n >= 0 /\ 1-x_5^0-2*n+y_6^0 >= 0 /\ -b_7^0 >= 0)], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)] Blocked [{}, {10[T]}, {10[T], 12[T]}, {}] Step with 7 Trace 11[T], 12[(-x_5^0-2*n+y_6^0 >= 0 /\ -1+n >= 0 /\ 1-x_5^0-2*n+y_6^0 >= 0 /\ -b_7^0 >= 0)], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)], 7[(1+x_5^0-y_6^0 <= 0 /\ 1-b_7^0 <= 0)] Blocked [{}, {10[T]}, {10[T], 12[T]}, {}, {}] Covered Trace 11[T], 12[(-x_5^0-2*n+y_6^0 >= 0 /\ -1+n >= 0 /\ 1-x_5^0-2*n+y_6^0 >= 0 /\ -b_7^0 >= 0)], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)] Blocked [{}, {10[T]}, {10[T], 12[T]}, {7[T]}] Step with 8 Trace 11[T], 12[(-x_5^0-2*n+y_6^0 >= 0 /\ -1+n >= 0 /\ 1-x_5^0-2*n+y_6^0 >= 0 /\ -b_7^0 >= 0)], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)], 8[(-x_5^0+y_6^0 <= 0)] Blocked [{}, {10[T]}, {10[T], 12[T]}, {7[T]}, {}] Backtrack Trace 11[T], 12[(-x_5^0-2*n+y_6^0 >= 0 /\ -1+n >= 0 /\ 1-x_5^0-2*n+y_6^0 >= 0 /\ -b_7^0 >= 0)], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)] Blocked [{}, {10[T]}, {10[T], 12[T]}, {7[T], 8[T]}] Backtrack Trace 11[T], 12[(-x_5^0-2*n+y_6^0 >= 0 /\ -1+n >= 0 /\ 1-x_5^0-2*n+y_6^0 >= 0 /\ -b_7^0 >= 0)] Blocked [{}, {10[T]}, {9[T], 10[T], 12[T]}] Backtrack Trace 11[T] Blocked [{}, {10[T], 12[T]}] Step with 9 Trace 11[T], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)] Blocked [{}, {10[T], 12[T]}, {}] Step with 8 Trace 11[T], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)], 8[(-x_5^0+y_6^0 <= 0)] Blocked [{}, {10[T], 12[T]}, {}, {}] Backtrack Trace 11[T], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)] Blocked [{}, {10[T], 12[T]}, {8[T]}] Step with 7 Trace 11[T], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)], 7[(1+x_5^0-y_6^0 <= 0 /\ 1-b_7^0 <= 0)] Blocked [{}, {10[T], 12[T]}, {8[T]}, {}] Covered Trace 11[T], 9[(1+x_5^0-y_6^0 <= 0 /\ b_7^0 <= 0)] Blocked [{}, {10[T], 12[T]}, {7[T], 8[T]}] Backtrack Trace 11[T] Blocked [{}, {9[T], 10[T], 12[T]}] Backtrack Trace Blocked [{11[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b