NO Initial ITS Start location: l5 Program variables: x^0 y^0 0: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, (y^0-y^post1 == 0 /\ -x^post1+x^0 == 0), cost: 1 1: l1 -> l3 : x^0'=x^post2, y^0'=y^post2, (-y^post2+y^0 == 0 /\ 1-x^0 <= 0 /\ x^0-x^post2 == 0), cost: 1 2: l3 -> l4 : x^0'=x^post3, y^0'=y^post3, (1+y^0 <= 0 /\ -x^post3+x^0 == 0 /\ y^0-y^post3 == 0), cost: 1 3: l3 -> l4 : x^0'=x^post4, y^0'=y^post4, (-x^post4+x^0 == 0 /\ y^0-y^post4 == 0 /\ 1-y^0 <= 0), cost: 1 4: l4 -> l2 : x^0'=x^post5, y^0'=y^post5, (-y^0-x^0+x^post5 == 0 /\ -y^post5+y^0 == 0), cost: 1 5: l2 -> l1 : x^0'=x^post6, y^0'=y^post6, (y^0-y^post6 == 0 /\ -x^post6+x^0 == 0), cost: 1 6: l5 -> l0 : x^0'=x^post7, y^0'=y^post7, (-x^post7+x^0 == 0 /\ y^0-y^post7 == 0), cost: 1 Chained Linear Paths Start location: l5 Program variables: x^0 y^0 1: l1 -> l3 : x^0'=x^post2, y^0'=y^post2, (-y^post2+y^0 == 0 /\ 1-x^0 <= 0 /\ x^0-x^post2 == 0), cost: 1 2: l3 -> l4 : x^0'=x^post3, y^0'=y^post3, (1+y^0 <= 0 /\ -x^post3+x^0 == 0 /\ y^0-y^post3 == 0), cost: 1 3: l3 -> l4 : x^0'=x^post4, y^0'=y^post4, (-x^post4+x^0 == 0 /\ y^0-y^post4 == 0 /\ 1-y^0 <= 0), cost: 1 8: l4 -> l1 : x^0'=x^post6, y^0'=y^post6, (-x^post6+x^post5 == 0 /\ y^post5-y^post6 == 0 /\ -y^0-x^0+x^post5 == 0 /\ -y^post5+y^0 == 0), cost: 1 7: l5 -> l1 : x^0'=x^post1, y^0'=y^post1, (y^post7-y^post1 == 0 /\ x^post7-x^post1 == 0 /\ -x^post7+x^0 == 0 /\ y^0-y^post7 == 0), cost: 1 Eliminating location l0 by chaining: Applied chaining First rule: l5 -> l0 : x^0'=x^post7, y^0'=y^post7, (-x^post7+x^0 == 0 /\ y^0-y^post7 == 0), cost: 1 Second rule: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, (y^0-y^post1 == 0 /\ -x^post1+x^0 == 0), cost: 1 New rule: l5 -> l1 : x^0'=x^post1, y^0'=y^post1, (y^post7-y^post1 == 0 /\ x^post7-x^post1 == 0 /\ -x^post7+x^0 == 0 /\ y^0-y^post7 == 0), cost: 1 Applied deletion Removed the following rules: 0 6 Eliminating location l2 by chaining: Applied chaining First rule: l4 -> l2 : x^0'=x^post5, y^0'=y^post5, (-y^0-x^0+x^post5 == 0 /\ -y^post5+y^0 == 0), cost: 1 Second rule: l2 -> l1 : x^0'=x^post6, y^0'=y^post6, (y^0-y^post6 == 0 /\ -x^post6+x^0 == 0), cost: 1 New rule: l4 -> l1 : x^0'=x^post6, y^0'=y^post6, (-x^post6+x^post5 == 0 /\ y^post5-y^post6 == 0 /\ -y^0-x^0+x^post5 == 0 /\ -y^post5+y^0 == 0), cost: 1 Applied deletion Removed the following rules: 4 5 Simplified Transitions Start location: l5 Program variables: x^0 y^0 9: l1 -> l3 : 1-x^0 <= 0, cost: 1 10: l3 -> l4 : 1+y^0 <= 0, cost: 1 11: l3 -> l4 : 1-y^0 <= 0, cost: 1 13: l4 -> l1 : x^0'=y^0+x^0, T, cost: 1 12: l5 -> l1 : T, cost: 1 Propagated Equalities Original rule: l1 -> l3 : x^0'=x^post2, y^0'=y^post2, (-y^post2+y^0 == 0 /\ 1-x^0 <= 0 /\ x^0-x^post2 == 0), cost: 1 New rule: l1 -> l3 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 propagated equality y^post2 = y^0 propagated equality x^post2 = x^0 Simplified Guard Original rule: l1 -> l3 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 New rule: l1 -> l3 : x^0'=x^0, y^0'=y^0, 1-x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l1 -> l3 : x^0'=x^0, y^0'=y^0, 1-x^0 <= 0, cost: 1 New rule: l1 -> l3 : 1-x^0 <= 0, cost: 1 Propagated Equalities Original rule: l3 -> l4 : x^0'=x^post3, y^0'=y^post3, (1+y^0 <= 0 /\ -x^post3+x^0 == 0 /\ y^0-y^post3 == 0), cost: 1 New rule: l3 -> l4 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1+y^0 <= 0), cost: 1 propagated equality x^post3 = x^0 propagated equality y^post3 = y^0 Simplified Guard Original rule: l3 -> l4 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1+y^0 <= 0), cost: 1 New rule: l3 -> l4 : x^0'=x^0, y^0'=y^0, 1+y^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l3 -> l4 : x^0'=x^0, y^0'=y^0, 1+y^0 <= 0, cost: 1 New rule: l3 -> l4 : 1+y^0 <= 0, cost: 1 Propagated Equalities Original rule: l3 -> l4 : x^0'=x^post4, y^0'=y^post4, (-x^post4+x^0 == 0 /\ y^0-y^post4 == 0 /\ 1-y^0 <= 0), cost: 1 New rule: l3 -> l4 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 propagated equality x^post4 = x^0 propagated equality y^post4 = y^0 Simplified Guard Original rule: l3 -> l4 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 New rule: l3 -> l4 : x^0'=x^0, y^0'=y^0, 1-y^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l3 -> l4 : x^0'=x^0, y^0'=y^0, 1-y^0 <= 0, cost: 1 New rule: l3 -> l4 : 1-y^0 <= 0, cost: 1 Propagated Equalities Original rule: l5 -> l1 : x^0'=x^post1, y^0'=y^post1, (y^post7-y^post1 == 0 /\ x^post7-x^post1 == 0 /\ -x^post7+x^0 == 0 /\ y^0-y^post7 == 0), cost: 1 New rule: l5 -> l1 : x^0'=x^post7, y^0'=y^post7, (0 == 0 /\ -x^post7+x^0 == 0 /\ y^0-y^post7 == 0), cost: 1 propagated equality y^post1 = y^post7 propagated equality x^post1 = x^post7 Propagated Equalities Original rule: l5 -> l1 : x^0'=x^post7, y^0'=y^post7, (0 == 0 /\ -x^post7+x^0 == 0 /\ y^0-y^post7 == 0), cost: 1 New rule: l5 -> l1 : x^0'=x^0, y^0'=y^0, 0 == 0, cost: 1 propagated equality x^post7 = x^0 propagated equality y^post7 = y^0 Simplified Guard Original rule: l5 -> l1 : x^0'=x^0, y^0'=y^0, 0 == 0, cost: 1 New rule: l5 -> l1 : x^0'=x^0, y^0'=y^0, T, cost: 1 Removed Trivial Updates Original rule: l5 -> l1 : x^0'=x^0, y^0'=y^0, T, cost: 1 New rule: l5 -> l1 : T, cost: 1 Propagated Equalities Original rule: l4 -> l1 : x^0'=x^post6, y^0'=y^post6, (-x^post6+x^post5 == 0 /\ y^post5-y^post6 == 0 /\ -y^0-x^0+x^post5 == 0 /\ -y^post5+y^0 == 0), cost: 1 New rule: l4 -> l1 : x^0'=x^post5, y^0'=y^post5, (0 == 0 /\ -y^0-x^0+x^post5 == 0 /\ -y^post5+y^0 == 0), cost: 1 propagated equality x^post6 = x^post5 propagated equality y^post6 = y^post5 Propagated Equalities Original rule: l4 -> l1 : x^0'=x^post5, y^0'=y^post5, (0 == 0 /\ -y^0-x^0+x^post5 == 0 /\ -y^post5+y^0 == 0), cost: 1 New rule: l4 -> l1 : x^0'=y^0+x^0, y^0'=y^0, 0 == 0, cost: 1 propagated equality x^post5 = y^0+x^0 propagated equality y^post5 = y^0 Simplified Guard Original rule: l4 -> l1 : x^0'=y^0+x^0, y^0'=y^0, 0 == 0, cost: 1 New rule: l4 -> l1 : x^0'=y^0+x^0, y^0'=y^0, T, cost: 1 Removed Trivial Updates Original rule: l4 -> l1 : x^0'=y^0+x^0, y^0'=y^0, T, cost: 1 New rule: l4 -> l1 : x^0'=y^0+x^0, T, cost: 1 Step with 12 Trace 12[T] Blocked [{}, {}] Step with 9 Trace 12[T], 9[(1-x^0 <= 0)] Blocked [{}, {}, {}] Step with 10 Trace 12[T], 9[(1-x^0 <= 0)], 10[(1+y^0 <= 0)] Blocked [{}, {}, {}, {}] Step with 13 Trace 12[T], 9[(1-x^0 <= 0)], 10[(1+y^0 <= 0)], 13[T] Blocked [{}, {}, {}, {}, {}] Accelerate Start location: l5 Program variables: x^0 y^0 9: l1 -> l3 : 1-x^0 <= 0, cost: 1 14: l1 -> l1 : x^0'=n*y^0+x^0, (-1+n >= 0 /\ -1+x^0+(-1+n)*y^0 >= 0 /\ -1-y^0 >= 0), cost: 1 10: l3 -> l4 : 1+y^0 <= 0, cost: 1 11: l3 -> l4 : 1-y^0 <= 0, cost: 1 13: l4 -> l1 : x^0'=y^0+x^0, T, cost: 1 12: l5 -> l1 : T, cost: 1 Loop Acceleration Original rule: l1 -> l1 : x^0'=y^0+x^0, (1-x^0 <= 0 /\ 1+y^0 <= 0), cost: 1 New rule: l1 -> l1 : x^0'=n*y^0+x^0, (-1+n >= 0 /\ -1+x^0+(-1+n)*y^0 >= 0 /\ -1-y^0 >= 0), cost: 1 -1+x^0 >= 0 [0]: montonic decrease yields -1+x^0+(-1+n)*y^0 >= 0, dependencies: -1-y^0 >= 0 -1+x^0 >= 0 [1]: eventual decrease yields (-1+x^0+(-1+n)*y^0 >= 0 /\ -1+x^0 >= 0), dependencies: -1-y^0 >= 0 -1+x^0 >= 0 [2]: eventual increase yields (-1+x^0 >= 0 /\ -y^0 <= 0), dependencies: -1-y^0 >= 0 -1-y^0 >= 0 [0]: monotonic increase yields -1-y^0 >= 0 Replacement map: {-1+x^0 >= 0 -> -1+x^0+(-1+n)*y^0 >= 0, -1-y^0 >= 0 -> -1-y^0 >= 0} Trace 12[T], 14[(-1+n >= 0 /\ -1+x^0+(-1+n)*y^0 >= 0 /\ -1-y^0 >= 0)] Blocked [{}, {}, {14[T]}] Step with 9 Trace 12[T], 14[(-1+n >= 0 /\ -1+x^0+(-1+n)*y^0 >= 0 /\ -1-y^0 >= 0)], 9[(1-x^0 <= 0)] Blocked [{}, {}, {14[T]}, {}] Step with 10 Trace 12[T], 14[(-1+n >= 0 /\ -1+x^0+(-1+n)*y^0 >= 0 /\ -1-y^0 >= 0)], 9[(1-x^0 <= 0)], 10[(1+y^0 <= 0)] Blocked [{}, {}, {14[T]}, {}, {}] Step with 13 Trace 12[T], 14[(-1+n >= 0 /\ -1+x^0+(-1+n)*y^0 >= 0 /\ -1-y^0 >= 0)], 9[(1-x^0 <= 0)], 10[(1+y^0 <= 0)], 13[T] Blocked [{}, {}, {14[T]}, {}, {}, {}] Covered Trace 12[T], 14[(-1+n >= 0 /\ -1+x^0+(-1+n)*y^0 >= 0 /\ -1-y^0 >= 0)], 9[(1-x^0 <= 0)], 10[(1+y^0 <= 0)] Blocked [{}, {}, {14[T]}, {}, {13[T]}] Backtrack Trace 12[T], 14[(-1+n >= 0 /\ -1+x^0+(-1+n)*y^0 >= 0 /\ -1-y^0 >= 0)], 9[(1-x^0 <= 0)] Blocked [{}, {}, {14[T]}, {10[T]}] Backtrack Trace 12[T], 14[(-1+n >= 0 /\ -1+x^0+(-1+n)*y^0 >= 0 /\ -1-y^0 >= 0)] Blocked [{}, {}, {9[T], 14[T]}] Backtrack Trace 12[T] Blocked [{}, {14[T]}] Step with 9 Trace 12[T], 9[(1-x^0 <= 0)] Blocked [{}, {14[T]}, {}] Step with 10 Trace 12[T], 9[(1-x^0 <= 0)], 10[(1+y^0 <= 0)] Blocked [{}, {14[T]}, {}, {}] Step with 13 Trace 12[T], 9[(1-x^0 <= 0)], 10[(1+y^0 <= 0)], 13[T] Blocked [{}, {14[T]}, {}, {}, {}] Covered Trace 12[T], 9[(1-x^0 <= 0)], 10[(1+y^0 <= 0)] Blocked [{}, {14[T]}, {}, {13[T]}] Backtrack Trace 12[T], 9[(1-x^0 <= 0)] Blocked [{}, {14[T]}, {10[T]}] Step with 11 Trace 12[T], 9[(1-x^0 <= 0)], 11[(1-y^0 <= 0)] Blocked [{}, {14[T]}, {10[T]}, {}] Step with 13 Trace 12[T], 9[(1-x^0 <= 0)], 11[(1-y^0 <= 0)], 13[T] Blocked [{}, {14[T]}, {10[T]}, {}, {}] Nonterm Start location: l5 Program variables: x^0 y^0 9: l1 -> l3 : 1-x^0 <= 0, cost: 1 14: l1 -> l1 : x^0'=n*y^0+x^0, (-1+n >= 0 /\ -1+x^0+(-1+n)*y^0 >= 0 /\ -1-y^0 >= 0), cost: 1 15: l1 -> LoAT_sink : (-1+x^0 >= 0 /\ -1+y^0 >= 0 /\ -1+n2 >= 0), cost: NONTERM 16: l1 -> l1 : x^0'=y^0*n2+x^0, (-1+x^0 >= 0 /\ -1+y^0 >= 0 /\ -1+n2 >= 0), cost: 1 10: l3 -> l4 : 1+y^0 <= 0, cost: 1 11: l3 -> l4 : 1-y^0 <= 0, cost: 1 13: l4 -> l1 : x^0'=y^0+x^0, T, cost: 1 12: l5 -> l1 : T, cost: 1 Certificate of Non-Termination Original rule: l1 -> l1 : x^0'=y^0+x^0, (1-x^0 <= 0 /\ 1-y^0 <= 0), cost: 1 New rule: l1 -> LoAT_sink : (-1+x^0 >= 0 /\ -1+y^0 >= 0 /\ -1+n2 >= 0), cost: NONTERM -1+x^0 >= 0 [0]: monotonic increase yields -1+x^0 >= 0, dependencies: -1+y^0 >= 0 -1+x^0 >= 0 [1]: eventual decrease yields (-1+x^0 >= 0 /\ -1+x^0+y^0*(-1+n2) >= 0), dependencies: -1+y^0 >= 0 -1+x^0 >= 0 [2]: eventual increase yields (-1+x^0 >= 0 /\ -y^0 <= 0), dependencies: -1+y^0 >= 0 -1+y^0 >= 0 [0]: monotonic increase yields -1+y^0 >= 0 Replacement map: {-1+x^0 >= 0 -> -1+x^0 >= 0, -1+y^0 >= 0 -> -1+y^0 >= 0} Loop Acceleration Original rule: l1 -> l1 : x^0'=y^0+x^0, (1-x^0 <= 0 /\ 1-y^0 <= 0), cost: 1 New rule: l1 -> l1 : x^0'=y^0*n2+x^0, (-1+x^0 >= 0 /\ -1+y^0 >= 0 /\ -1+n2 >= 0), cost: 1 -1+x^0 >= 0 [0]: monotonic increase yields -1+x^0 >= 0, dependencies: -1+y^0 >= 0 -1+x^0 >= 0 [1]: eventual decrease yields (-1+x^0 >= 0 /\ -1+x^0+y^0*(-1+n2) >= 0), dependencies: -1+y^0 >= 0 -1+x^0 >= 0 [2]: eventual increase yields (-1+x^0 >= 0 /\ -y^0 <= 0), dependencies: -1+y^0 >= 0 -1+y^0 >= 0 [0]: monotonic increase yields -1+y^0 >= 0 Replacement map: {-1+x^0 >= 0 -> -1+x^0 >= 0, -1+y^0 >= 0 -> -1+y^0 >= 0} Step with 15 Trace 12[T], 15[(-1+x^0 >= 0 /\ -1+y^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {14[T]}, {15[T]}] Refute Counterexample [ x^0=2 y^0=1 ] 12 [ x^0=2 y^0=1 ] 15 NO Build SHA: a05f16bf13df659c382799650051f91bf6828c7b