unknown Initial ITS Start location: l3 Program variables: x^0 y^0 0: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, (1-x^0 <= 0 /\ x^post1+y^0-x^0 == 0 /\ -1-y^0+y^post1 == 0), cost: 1 1: l1 -> l0 : x^0'=x^post2, y^0'=y^post2, (-y^post2+y^0 == 0 /\ x^0-x^post2 == 0), cost: 1 2: l2 -> l0 : x^0'=x^post3, y^0'=y^post3, (1-y^0 <= 0 /\ -x^post3+x^0 == 0 /\ y^0-y^post3 == 0), cost: 1 3: l3 -> l2 : x^0'=x^post4, y^0'=y^post4, (-x^post4+x^0 == 0 /\ y^0-y^post4 == 0), cost: 1 Chained Linear Paths Start location: l3 Program variables: x^0 y^0 5: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, (x^post1-x^post2 == 0 /\ 1-x^0 <= 0 /\ x^post1+y^0-x^0 == 0 /\ -y^post2+y^post1 == 0 /\ -1-y^0+y^post1 == 0), cost: 1 4: l3 -> l0 : x^0'=x^post3, y^0'=y^post3, (-x^post4+x^0 == 0 /\ y^post4-y^post3 == 0 /\ y^0-y^post4 == 0 /\ x^post4-x^post3 == 0 /\ 1-y^post4 <= 0), cost: 1 Eliminating location l2 by chaining: Applied chaining First rule: l3 -> l2 : x^0'=x^post4, y^0'=y^post4, (-x^post4+x^0 == 0 /\ y^0-y^post4 == 0), cost: 1 Second rule: l2 -> l0 : x^0'=x^post3, y^0'=y^post3, (1-y^0 <= 0 /\ -x^post3+x^0 == 0 /\ y^0-y^post3 == 0), cost: 1 New rule: l3 -> l0 : x^0'=x^post3, y^0'=y^post3, (-x^post4+x^0 == 0 /\ y^post4-y^post3 == 0 /\ y^0-y^post4 == 0 /\ x^post4-x^post3 == 0 /\ 1-y^post4 <= 0), cost: 1 Applied deletion Removed the following rules: 2 3 Eliminating location l1 by chaining: Applied chaining First rule: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, (1-x^0 <= 0 /\ x^post1+y^0-x^0 == 0 /\ -1-y^0+y^post1 == 0), cost: 1 Second rule: l1 -> l0 : x^0'=x^post2, y^0'=y^post2, (-y^post2+y^0 == 0 /\ x^0-x^post2 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, (x^post1-x^post2 == 0 /\ 1-x^0 <= 0 /\ x^post1+y^0-x^0 == 0 /\ -y^post2+y^post1 == 0 /\ -1-y^0+y^post1 == 0), cost: 1 Applied deletion Removed the following rules: 0 1 Simplified Transitions Start location: l3 Program variables: x^0 y^0 7: l0 -> l0 : x^0'=-y^0+x^0, y^0'=1+y^0, 1-x^0 <= 0, cost: 1 6: l3 -> l0 : 1-y^0 <= 0, cost: 1 Propagated Equalities Original rule: l3 -> l0 : x^0'=x^post3, y^0'=y^post3, (-x^post4+x^0 == 0 /\ y^post4-y^post3 == 0 /\ y^0-y^post4 == 0 /\ x^post4-x^post3 == 0 /\ 1-y^post4 <= 0), cost: 1 New rule: l3 -> l0 : x^0'=x^post4, y^0'=y^post4, (0 == 0 /\ -x^post4+x^0 == 0 /\ y^0-y^post4 == 0 /\ 1-y^post4 <= 0), cost: 1 propagated equality y^post3 = y^post4 propagated equality x^post3 = x^post4 Propagated Equalities Original rule: l3 -> l0 : x^0'=x^post4, y^0'=y^post4, (0 == 0 /\ -x^post4+x^0 == 0 /\ y^0-y^post4 == 0 /\ 1-y^post4 <= 0), cost: 1 New rule: l3 -> l0 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 propagated equality x^post4 = x^0 propagated equality y^post4 = y^0 Simplified Guard Original rule: l3 -> l0 : x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 New rule: l3 -> l0 : x^0'=x^0, y^0'=y^0, 1-y^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l3 -> l0 : x^0'=x^0, y^0'=y^0, 1-y^0 <= 0, cost: 1 New rule: l3 -> l0 : 1-y^0 <= 0, cost: 1 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, (x^post1-x^post2 == 0 /\ 1-x^0 <= 0 /\ x^post1+y^0-x^0 == 0 /\ -y^post2+y^post1 == 0 /\ -1-y^0+y^post1 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^post1, y^0'=y^post1, (0 == 0 /\ 1-x^0 <= 0 /\ x^post1+y^0-x^0 == 0 /\ -1-y^0+y^post1 == 0), cost: 1 propagated equality x^post2 = x^post1 propagated equality y^post2 = y^post1 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post1, y^0'=y^post1, (0 == 0 /\ 1-x^0 <= 0 /\ x^post1+y^0-x^0 == 0 /\ -1-y^0+y^post1 == 0), cost: 1 New rule: l0 -> l0 : x^0'=-y^0+x^0, y^0'=1+y^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 propagated equality x^post1 = -y^0+x^0 propagated equality y^post1 = 1+y^0 Simplified Guard Original rule: l0 -> l0 : x^0'=-y^0+x^0, y^0'=1+y^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 New rule: l0 -> l0 : x^0'=-y^0+x^0, y^0'=1+y^0, 1-x^0 <= 0, cost: 1 Step with 6 Trace 6[(1-y^0 <= 0)] Blocked [{}, {}] Step with 7 Trace 6[(1-y^0 <= 0)], 7[(1-x^0 <= 0)] Blocked [{}, {}, {}] Accelerate Start location: l3 Program variables: x^0 y^0 7: l0 -> l0 : x^0'=-y^0+x^0, y^0'=1+y^0, 1-x^0 <= 0, cost: 1 8: l0 -> l0 : x^0'=-y^0*n+1/2*n-1/2*n^2+x^0, y^0'=y^0+n, (-3/2+1/2*n-1/2*(-1+n)^2+x^0-y^0*(-1+n) >= 0 /\ -1+x^0 >= 0 /\ -1+n >= 0), cost: 1 6: l3 -> l0 : 1-y^0 <= 0, cost: 1 Loop Acceleration Original rule: l0 -> l0 : x^0'=-y^0+x^0, y^0'=1+y^0, (1-x^0 <= 0), cost: 1 New rule: l0 -> l0 : x^0'=-y^0*n+1/2*n-1/2*n^2+x^0, y^0'=y^0+n, (-3/2+1/2*n-1/2*(-1+n)^2+x^0-y^0*(-1+n) >= 0 /\ -1+x^0 >= 0 /\ -1+n >= 0), cost: 1 -1+x^0 >= 0 [0]: eventual decrease yields (-3/2+1/2*n-1/2*(-1+n)^2+x^0-y^0*(-1+n) >= 0 /\ -1+x^0 >= 0) Replacement map: {-1+x^0 >= 0 -> (-3/2+1/2*n-1/2*(-1+n)^2+x^0-y^0*(-1+n) >= 0 /\ -1+x^0 >= 0)} Trace 6[(1-y^0 <= 0)], 8[(-3/2+1/2*n-1/2*(-1+n)^2+x^0-y^0*(-1+n) >= 0 /\ -1+x^0 >= 0 /\ -1+n >= 0)] Blocked [{}, {}, {7[T], 8[T]}] Backtrack Trace 6[(1-y^0 <= 0)] Blocked [{}, {8[T]}] Step with 7 Trace 6[(1-y^0 <= 0)], 7[(1-x^0 <= 0)] Blocked [{}, {8[T]}, {}] Covered Trace 6[(1-y^0 <= 0)] Blocked [{}, {7[T], 8[T]}] Backtrack Trace Blocked [{6[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b