NO Initial ITS Start location: l4 Program variables: x^0 y^0 z^0 0: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, z^0'=z^post1, (0 == 0 /\ -y^post1+y^0 == 0 /\ y^0+x^post1-x^0 == 0), cost: 1 1: l0 -> l2 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (2-z^0 <= 0 /\ 1-z^0+z^post2 == 0 /\ -1+y^post2-y^0 == 0 /\ -x^post2+x^0 == 0), cost: 1 3: l1 -> l0 : x^0'=x^post4, y^0'=y^post4, z^0'=z^post4, (z^0-z^post4 == 0 /\ -x^post4+x^0 == 0 /\ 2-x^0 <= 0 /\ -y^post4+y^0 == 0), cost: 1 2: l2 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (z^0-z^post3 == 0 /\ -y^post3+y^0 == 0 /\ -x^post3+x^0 == 0), cost: 1 4: l3 -> l1 : x^0'=x^post5, y^0'=y^post5, z^0'=z^post5, (z^0-z^post5 == 0 /\ -x^post5+x^0 == 0 /\ y^0-y^post5 == 0), cost: 1 5: l4 -> l3 : x^0'=x^post6, y^0'=y^post6, z^0'=z^post6, (-x^post6+x^0 == 0 /\ -z^post6+z^0 == 0 /\ y^0-y^post6 == 0), cost: 1 Chained Linear Paths Start location: l4 Program variables: x^0 y^0 z^0 0: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, z^0'=z^post1, (0 == 0 /\ -y^post1+y^0 == 0 /\ y^0+x^post1-x^0 == 0), cost: 1 7: l0 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (2-z^0 <= 0 /\ y^post2-y^post3 == 0 /\ 1-z^0+z^post2 == 0 /\ z^post2-z^post3 == 0 /\ -1+y^post2-y^0 == 0 /\ -x^post2+x^0 == 0 /\ x^post2-x^post3 == 0), cost: 1 3: l1 -> l0 : x^0'=x^post4, y^0'=y^post4, z^0'=z^post4, (z^0-z^post4 == 0 /\ -x^post4+x^0 == 0 /\ 2-x^0 <= 0 /\ -y^post4+y^0 == 0), cost: 1 6: l4 -> l1 : x^0'=x^post5, y^0'=y^post5, z^0'=z^post5, (y^post6-y^post5 == 0 /\ z^post6-z^post5 == 0 /\ x^post6-x^post5 == 0 /\ -x^post6+x^0 == 0 /\ -z^post6+z^0 == 0 /\ y^0-y^post6 == 0), cost: 1 Eliminating location l3 by chaining: Applied chaining First rule: l4 -> l3 : x^0'=x^post6, y^0'=y^post6, z^0'=z^post6, (-x^post6+x^0 == 0 /\ -z^post6+z^0 == 0 /\ y^0-y^post6 == 0), cost: 1 Second rule: l3 -> l1 : x^0'=x^post5, y^0'=y^post5, z^0'=z^post5, (z^0-z^post5 == 0 /\ -x^post5+x^0 == 0 /\ y^0-y^post5 == 0), cost: 1 New rule: l4 -> l1 : x^0'=x^post5, y^0'=y^post5, z^0'=z^post5, (y^post6-y^post5 == 0 /\ z^post6-z^post5 == 0 /\ x^post6-x^post5 == 0 /\ -x^post6+x^0 == 0 /\ -z^post6+z^0 == 0 /\ y^0-y^post6 == 0), cost: 1 Applied deletion Removed the following rules: 4 5 Eliminating location l2 by chaining: Applied chaining First rule: l0 -> l2 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (2-z^0 <= 0 /\ 1-z^0+z^post2 == 0 /\ -1+y^post2-y^0 == 0 /\ -x^post2+x^0 == 0), cost: 1 Second rule: l2 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (z^0-z^post3 == 0 /\ -y^post3+y^0 == 0 /\ -x^post3+x^0 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (2-z^0 <= 0 /\ y^post2-y^post3 == 0 /\ 1-z^0+z^post2 == 0 /\ z^post2-z^post3 == 0 /\ -1+y^post2-y^0 == 0 /\ -x^post2+x^0 == 0 /\ x^post2-x^post3 == 0), cost: 1 Applied deletion Removed the following rules: 1 2 Simplified Transitions Start location: l4 Program variables: x^0 y^0 z^0 8: l0 -> l1 : x^0'=-y^0+x^0, z^0'=z^post1, T, cost: 1 11: l0 -> l0 : y^0'=1+y^0, z^0'=-1+z^0, 2-z^0 <= 0, cost: 1 9: l1 -> l0 : 2-x^0 <= 0, cost: 1 10: l4 -> l1 : T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : x^0'=x^post1, y^0'=y^post1, z^0'=z^post1, (0 == 0 /\ -y^post1+y^0 == 0 /\ y^0+x^post1-x^0 == 0), cost: 1 New rule: l0 -> l1 : x^0'=-y^0+x^0, y^0'=y^0, z^0'=z^post1, 0 == 0, cost: 1 propagated equality y^post1 = y^0 propagated equality x^post1 = -y^0+x^0 Simplified Guard Original rule: l0 -> l1 : x^0'=-y^0+x^0, y^0'=y^0, z^0'=z^post1, 0 == 0, cost: 1 New rule: l0 -> l1 : x^0'=-y^0+x^0, y^0'=y^0, z^0'=z^post1, T, cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : x^0'=-y^0+x^0, y^0'=y^0, z^0'=z^post1, T, cost: 1 New rule: l0 -> l1 : x^0'=-y^0+x^0, z^0'=z^post1, T, cost: 1 Propagated Equalities Original rule: l1 -> l0 : x^0'=x^post4, y^0'=y^post4, z^0'=z^post4, (z^0-z^post4 == 0 /\ -x^post4+x^0 == 0 /\ 2-x^0 <= 0 /\ -y^post4+y^0 == 0), cost: 1 New rule: l1 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ 2-x^0 <= 0), cost: 1 propagated equality z^post4 = z^0 propagated equality x^post4 = x^0 propagated equality y^post4 = y^0 Simplified Guard Original rule: l1 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, (0 == 0 /\ 2-x^0 <= 0), cost: 1 New rule: l1 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, 2-x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l1 -> l0 : x^0'=x^0, y^0'=y^0, z^0'=z^0, 2-x^0 <= 0, cost: 1 New rule: l1 -> l0 : 2-x^0 <= 0, cost: 1 Propagated Equalities Original rule: l4 -> l1 : x^0'=x^post5, y^0'=y^post5, z^0'=z^post5, (y^post6-y^post5 == 0 /\ z^post6-z^post5 == 0 /\ x^post6-x^post5 == 0 /\ -x^post6+x^0 == 0 /\ -z^post6+z^0 == 0 /\ y^0-y^post6 == 0), cost: 1 New rule: l4 -> l1 : x^0'=x^post6, y^0'=y^post6, z^0'=z^post6, (0 == 0 /\ -x^post6+x^0 == 0 /\ -z^post6+z^0 == 0 /\ y^0-y^post6 == 0), cost: 1 propagated equality y^post5 = y^post6 propagated equality z^post5 = z^post6 propagated equality x^post5 = x^post6 Propagated Equalities Original rule: l4 -> l1 : x^0'=x^post6, y^0'=y^post6, z^0'=z^post6, (0 == 0 /\ -x^post6+x^0 == 0 /\ -z^post6+z^0 == 0 /\ y^0-y^post6 == 0), cost: 1 New rule: l4 -> l1 : x^0'=x^0, y^0'=y^0, z^0'=z^0, 0 == 0, cost: 1 propagated equality x^post6 = x^0 propagated equality z^post6 = z^0 propagated equality y^post6 = y^0 Simplified Guard Original rule: l4 -> l1 : x^0'=x^0, y^0'=y^0, z^0'=z^0, 0 == 0, cost: 1 New rule: l4 -> l1 : x^0'=x^0, y^0'=y^0, z^0'=z^0, T, cost: 1 Removed Trivial Updates Original rule: l4 -> l1 : x^0'=x^0, y^0'=y^0, z^0'=z^0, T, cost: 1 New rule: l4 -> l1 : T, cost: 1 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post3, y^0'=y^post3, z^0'=z^post3, (2-z^0 <= 0 /\ y^post2-y^post3 == 0 /\ 1-z^0+z^post2 == 0 /\ z^post2-z^post3 == 0 /\ -1+y^post2-y^0 == 0 /\ -x^post2+x^0 == 0 /\ x^post2-x^post3 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (0 == 0 /\ 2-z^0 <= 0 /\ 1-z^0+z^post2 == 0 /\ -1+y^post2-y^0 == 0 /\ -x^post2+x^0 == 0), cost: 1 propagated equality y^post3 = y^post2 propagated equality z^post3 = z^post2 propagated equality x^post3 = x^post2 Propagated Equalities Original rule: l0 -> l0 : x^0'=x^post2, y^0'=y^post2, z^0'=z^post2, (0 == 0 /\ 2-z^0 <= 0 /\ 1-z^0+z^post2 == 0 /\ -1+y^post2-y^0 == 0 /\ -x^post2+x^0 == 0), cost: 1 New rule: l0 -> l0 : x^0'=x^0, y^0'=1+y^0, z^0'=-1+z^0, (0 == 0 /\ 2-z^0 <= 0), cost: 1 propagated equality z^post2 = -1+z^0 propagated equality y^post2 = 1+y^0 propagated equality x^post2 = x^0 Simplified Guard Original rule: l0 -> l0 : x^0'=x^0, y^0'=1+y^0, z^0'=-1+z^0, (0 == 0 /\ 2-z^0 <= 0), cost: 1 New rule: l0 -> l0 : x^0'=x^0, y^0'=1+y^0, z^0'=-1+z^0, 2-z^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l0 : x^0'=x^0, y^0'=1+y^0, z^0'=-1+z^0, 2-z^0 <= 0, cost: 1 New rule: l0 -> l0 : y^0'=1+y^0, z^0'=-1+z^0, 2-z^0 <= 0, cost: 1 Step with 10 Trace 10[T] Blocked [{}, {}] Step with 9 Trace 10[T], 9[(2-x^0 <= 0)] Blocked [{}, {}, {}] Step with 8 Trace 10[T], 9[(2-x^0 <= 0)], 8[T] Blocked [{}, {}, {}, {}] Nonterm Start location: l4 Program variables: x^0 y^0 z^0 8: l0 -> l1 : x^0'=-y^0+x^0, z^0'=z^post1, T, cost: 1 11: l0 -> l0 : y^0'=1+y^0, z^0'=-1+z^0, 2-z^0 <= 0, cost: 1 9: l1 -> l0 : 2-x^0 <= 0, cost: 1 12: l1 -> LoAT_sink : (-2+x^0 >= 0 /\ y^0 <= 0), cost: NONTERM 13: l1 -> l1 : x^0'=-y^0*n+x^0, z^0'=z^post1, (-2+x^0 >= 0 /\ -2-y^0*(-1+n)+x^0 >= 0 /\ -1+n >= 0), cost: 1 10: l4 -> l1 : T, cost: 1 Certificate of Non-Termination Original rule: l1 -> l1 : x^0'=-y^0+x^0, z^0'=z^post1, 2-x^0 <= 0, cost: 1 New rule: l1 -> LoAT_sink : (-2+x^0 >= 0 /\ y^0 <= 0), cost: NONTERM -2+x^0 >= 0 [0]: eventual decrease yields (-2+x^0 >= 0 /\ -2-y^0*(-1+n)+x^0 >= 0) -2+x^0 >= 0 [1]: eventual increase yields (-2+x^0 >= 0 /\ y^0 <= 0) Replacement map: {-2+x^0 >= 0 -> (-2+x^0 >= 0 /\ y^0 <= 0)} Loop Acceleration Original rule: l1 -> l1 : x^0'=-y^0+x^0, z^0'=z^post1, 2-x^0 <= 0, cost: 1 New rule: l1 -> l1 : x^0'=-y^0*n+x^0, z^0'=z^post1, (-2+x^0 >= 0 /\ -2-y^0*(-1+n)+x^0 >= 0 /\ -1+n >= 0), cost: 1 -2+x^0 >= 0 [0]: eventual decrease yields (-2+x^0 >= 0 /\ -2-y^0*(-1+n)+x^0 >= 0) -2+x^0 >= 0 [1]: eventual increase yields (-2+x^0 >= 0 /\ y^0 <= 0) Replacement map: {-2+x^0 >= 0 -> (-2+x^0 >= 0 /\ -2-y^0*(-1+n)+x^0 >= 0)} Step with 12 Trace 10[T], 12[(-2+x^0 >= 0 /\ y^0 <= 0)] Blocked [{}, {}, {12[T]}] Refute Counterexample [ x^0=2 y^0=0 z^0=0 ] 10 [ x^0=2 y^0=0 z^0=0 ] 12 NO Build SHA: a05f16bf13df659c382799650051f91bf6828c7b