unknown Initial ITS Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 0: l0 -> l1 : oldx0^0'=oldx0^post1, oldx1^0'=oldx1^post1, oldx2^0'=oldx2^post1, oldx3^0'=oldx3^post1, oldx4^0'=oldx4^post1, oldx5^0'=oldx5^post1, oldx6^0'=oldx6^post1, oldx7^0'=oldx7^post1, oldx8^0'=oldx8^post1, oldx9^0'=oldx9^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, (0 == 0 /\ -oldx6^post1+x1^post1 == 0 /\ x3^post1-oldx8^post1 == 0 /\ -x4^0+oldx4^post1 == 0 /\ -x2^0+oldx2^post1 == 0 /\ -oldx7^post1+x2^post1 == 0 /\ -oldx9^post1+x4^post1 == 0 /\ oldx1^post1-x1^0 == 0 /\ oldx3^post1-x3^0 == 0 /\ oldx0^post1-x0^0 == 0 /\ x0^post1-oldx5^post1 == 0), cost: 1 1: l2 -> l1 : oldx0^0'=oldx0^post2, oldx1^0'=oldx1^post2, oldx2^0'=oldx2^post2, oldx3^0'=oldx3^post2, oldx4^0'=oldx4^post2, oldx5^0'=oldx5^post2, oldx6^0'=oldx6^post2, oldx7^0'=oldx7^post2, oldx8^0'=oldx8^post2, oldx9^0'=oldx9^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, (0 == 0 /\ x0^post2-oldx5^post2 == 0 /\ -x0^0+oldx0^post2 == 0 /\ x1^post2-oldx6^post2 == 0 /\ oldx1^post2-x1^0 == 0 /\ oldx4^post2-x4^0 == 0 /\ x3^post2-oldx8^post2 == 0 /\ x4^post2-oldx9^post2 == 0 /\ -x3^0+oldx3^post2 == 0 /\ -x2^0+oldx2^post2 == 0 /\ -oldx7^post2+x2^post2 == 0), cost: 1 2: l2 -> l3 : oldx0^0'=oldx0^post3, oldx1^0'=oldx1^post3, oldx2^0'=oldx2^post3, oldx3^0'=oldx3^post3, oldx4^0'=oldx4^post3, oldx5^0'=oldx5^post3, oldx6^0'=oldx6^post3, oldx7^0'=oldx7^post3, oldx8^0'=oldx8^post3, oldx9^0'=oldx9^post3, x0^0'=x0^post3, x1^0'=x1^post3, x2^0'=x2^post3, x3^0'=x3^post3, x4^0'=x4^post3, (-oldx2^post3+x2^post3 == 0 /\ oldx8^0-oldx8^post3 == 0 /\ -oldx3^post3+x3^post3 == 0 /\ oldx0^post3-x0^0 == 0 /\ oldx1^post3-x1^0 == 0 /\ oldx4^post3-x4^0 == 0 /\ -oldx4^post3+x4^post3 == 0 /\ -1+x0^post3-oldx0^post3 == 0 /\ oldx5^0-oldx5^post3 == 0 /\ -oldx1^post3+x1^post3 == 0 /\ oldx6^0-oldx6^post3 == 0 /\ oldx9^0-oldx9^post3 == 0 /\ oldx7^0-oldx7^post3 == 0 /\ -x3^0+oldx3^post3 == 0 /\ -x2^0+oldx2^post3 == 0), cost: 1 5: l3 -> l4 : oldx0^0'=oldx0^post6, oldx1^0'=oldx1^post6, oldx2^0'=oldx2^post6, oldx3^0'=oldx3^post6, oldx4^0'=oldx4^post6, oldx5^0'=oldx5^post6, oldx6^0'=oldx6^post6, oldx7^0'=oldx7^post6, oldx8^0'=oldx8^post6, oldx9^0'=oldx9^post6, x0^0'=x0^post6, x1^0'=x1^post6, x2^0'=x2^post6, x3^0'=x3^post6, x4^0'=x4^post6, (-x2^0+oldx2^post6 == 0 /\ oldx8^0-oldx8^post6 == 0 /\ -oldx4^post6+x4^post6 == 0 /\ -oldx1^post6+x1^post6 == 0 /\ oldx4^post6-x4^0 == 0 /\ oldx5^0-oldx5^post6 == 0 /\ oldx9^0-oldx9^post6 == 0 /\ oldx6^0-oldx6^post6 == 0 /\ x0^post6-oldx0^post6 == 0 /\ -x3^0+oldx3^post6 == 0 /\ oldx7^0-oldx7^post6 == 0 /\ -oldx2^post6+x2^post6 == 0 /\ x3^post6-oldx3^post6 == 0 /\ oldx0^post6-x0^0 == 0 /\ oldx1^post6-x1^0 == 0), cost: 1 3: l4 -> l0 : oldx0^0'=oldx0^post4, oldx1^0'=oldx1^post4, oldx2^0'=oldx2^post4, oldx3^0'=oldx3^post4, oldx4^0'=oldx4^post4, oldx5^0'=oldx5^post4, oldx6^0'=oldx6^post4, oldx7^0'=oldx7^post4, oldx8^0'=oldx8^post4, oldx9^0'=oldx9^post4, x0^0'=x0^post4, x1^0'=x1^post4, x2^0'=x2^post4, x3^0'=x3^post4, x4^0'=x4^post4, (-oldx1^post4+x1^post4 == 0 /\ -x4^0+oldx4^post4 == 0 /\ oldx7^0-oldx7^post4 == 0 /\ -oldx5^post4+oldx5^0 == 0 /\ oldx1^post4-x1^0 == 0 /\ -oldx8^post4+oldx8^0 == 0 /\ -x2^0+oldx2^post4 == 0 /\ 1+oldx1^post4-oldx0^post4 <= 0 /\ oldx3^post4-x3^0 == 0 /\ -oldx9^post4+oldx9^0 == 0 /\ x4^post4-oldx4^post4 == 0 /\ -oldx2^post4+x2^post4 == 0 /\ -oldx3^post4+x3^post4 == 0 /\ -oldx6^post4+oldx6^0 == 0 /\ -oldx0^post4+x0^post4 == 0 /\ oldx0^post4-x0^0 == 0), cost: 1 4: l4 -> l2 : oldx0^0'=oldx0^post5, oldx1^0'=oldx1^post5, oldx2^0'=oldx2^post5, oldx3^0'=oldx3^post5, oldx4^0'=oldx4^post5, oldx5^0'=oldx5^post5, oldx6^0'=oldx6^post5, oldx7^0'=oldx7^post5, oldx8^0'=oldx8^post5, oldx9^0'=oldx9^post5, x0^0'=x0^post5, x1^0'=x1^post5, x2^0'=x2^post5, x3^0'=x3^post5, x4^0'=x4^post5, (-oldx3^post5+x3^post5 == 0 /\ -x1^0+oldx1^post5 == 0 /\ -x4^0+oldx4^post5 == 0 /\ oldx7^0-oldx7^post5 == 0 /\ -x2^0+oldx2^post5 == 0 /\ oldx0^post5-oldx1^post5 <= 0 /\ oldx3^post5-x3^0 == 0 /\ -oldx9^post5+oldx9^0 == 0 /\ x0^post5-oldx0^post5 == 0 /\ -oldx2^post5+x2^post5 == 0 /\ oldx8^0-oldx8^post5 == 0 /\ x1^post5-oldx1^post5 == 0 /\ -oldx6^post5+oldx6^0 == 0 /\ -oldx4^post5+x4^post5 == 0 /\ oldx0^post5-x0^0 == 0 /\ oldx5^0-oldx5^post5 == 0), cost: 1 6: l5 -> l6 : oldx0^0'=oldx0^post7, oldx1^0'=oldx1^post7, oldx2^0'=oldx2^post7, oldx3^0'=oldx3^post7, oldx4^0'=oldx4^post7, oldx5^0'=oldx5^post7, oldx6^0'=oldx6^post7, oldx7^0'=oldx7^post7, oldx8^0'=oldx8^post7, oldx9^0'=oldx9^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, (0 == 0 /\ x4^post7-oldx9^post7 == 0 /\ -oldx7^post7+x2^post7 == 0 /\ oldx4^post7-x4^0 == 0 /\ -oldx8^post7+x3^post7 == 0 /\ -x2^0+oldx2^post7 == 0 /\ x1^post7-oldx6^post7 == 0 /\ -x1^0+oldx1^post7 == 0 /\ x0^post7-oldx5^post7 == 0 /\ oldx0^post7-x0^0 == 0 /\ oldx3^post7-x3^0 == 0), cost: 1 7: l7 -> l8 : oldx0^0'=oldx0^post8, oldx1^0'=oldx1^post8, oldx2^0'=oldx2^post8, oldx3^0'=oldx3^post8, oldx4^0'=oldx4^post8, oldx5^0'=oldx5^post8, oldx6^0'=oldx6^post8, oldx7^0'=oldx7^post8, oldx8^0'=oldx8^post8, oldx9^0'=oldx9^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, (0 == 0 /\ x1^post8-oldx6^post8 == 0 /\ -oldx5^post8+x0^post8 == 0 /\ -x4^0+oldx4^post8 == 0 /\ x2^post8-oldx7^post8 == 0 /\ x4^post8-oldx9^post8 == 0 /\ -x1^0+oldx1^post8 == 0 /\ oldx0^post8-x0^0 == 0 /\ oldx2^post8-x2^0 == 0 /\ oldx3^post8-x3^0 == 0 /\ -oldx8^post8+x3^post8 == 0), cost: 1 8: l9 -> l6 : oldx0^0'=oldx0^post9, oldx1^0'=oldx1^post9, oldx2^0'=oldx2^post9, oldx3^0'=oldx3^post9, oldx4^0'=oldx4^post9, oldx5^0'=oldx5^post9, oldx6^0'=oldx6^post9, oldx7^0'=oldx7^post9, oldx8^0'=oldx8^post9, oldx9^0'=oldx9^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, (0 == 0 /\ -x1^0+oldx1^post9 == 0 /\ -x2^0+oldx2^post9 == 0 /\ -oldx9^post9+x4^post9 == 0 /\ -oldx6^post9+x1^post9 == 0 /\ -oldx7^post9+x2^post9 == 0 /\ oldx3^post9-x3^0 == 0 /\ oldx0^post9-x0^0 == 0 /\ -x4^0+oldx4^post9 == 0 /\ x0^post9-oldx5^post9 == 0 /\ x3^post9-oldx8^post9 == 0), cost: 1 9: l9 -> l10 : oldx0^0'=oldx0^post10, oldx1^0'=oldx1^post10, oldx2^0'=oldx2^post10, oldx3^0'=oldx3^post10, oldx4^0'=oldx4^post10, oldx5^0'=oldx5^post10, oldx6^0'=oldx6^post10, oldx7^0'=oldx7^post10, oldx8^0'=oldx8^post10, oldx9^0'=oldx9^post10, x0^0'=x0^post10, x1^0'=x1^post10, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, (0 == 0 /\ -oldx6^post10+x3^post10 == 0 /\ -x2^0+oldx2^post10 == 0 /\ -oldx1^post10+x1^post10 == 0 /\ -oldx7^post10+x4^post10 == 0 /\ oldx8^0-oldx8^post10 == 0 /\ oldx9^0-oldx9^post10 == 0 /\ oldx0^post10-x0^0 == 0 /\ -oldx5^post10+x2^post10 == 0 /\ oldx4^post10-x4^0 == 0 /\ oldx3^post10-x3^0 == 0 /\ 1+x0^post10-oldx0^post10 == 0 /\ oldx1^post10-x1^0 == 0), cost: 1 34: l10 -> l19 : oldx0^0'=oldx0^post35, oldx1^0'=oldx1^post35, oldx2^0'=oldx2^post35, oldx3^0'=oldx3^post35, oldx4^0'=oldx4^post35, oldx5^0'=oldx5^post35, oldx6^0'=oldx6^post35, oldx7^0'=oldx7^post35, oldx8^0'=oldx8^post35, oldx9^0'=oldx9^post35, x0^0'=x0^post35, x1^0'=x1^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, (0 == 0 /\ -oldx7^post35+x4^post35 == 0 /\ oldx8^0-oldx8^post35 == 0 /\ oldx2^post35-x2^0 == 0 /\ -x1^0+oldx1^post35 == 0 /\ oldx0^post35-x0^0 == 0 /\ -oldx1^post35+x1^post35 == 0 /\ -oldx0^post35+x0^post35 == 0 /\ oldx3^post35-x3^0 == 0 /\ -x4^0+oldx4^post35 == 0 /\ -oldx9^post35+oldx9^0 == 0 /\ -oldx6^post35+x3^post35 == 0 /\ x2^post35-oldx5^post35 == 0), cost: 1 10: l11 -> l12 : oldx0^0'=oldx0^post11, oldx1^0'=oldx1^post11, oldx2^0'=oldx2^post11, oldx3^0'=oldx3^post11, oldx4^0'=oldx4^post11, oldx5^0'=oldx5^post11, oldx6^0'=oldx6^post11, oldx7^0'=oldx7^post11, oldx8^0'=oldx8^post11, oldx9^0'=oldx9^post11, x0^0'=x0^post11, x1^0'=x1^post11, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (0 == 0 /\ -oldx6^post11+x3^post11 == 0 /\ -1+x1^post11-oldx1^post11 == 0 /\ -x4^0+oldx4^post11 == 0 /\ x0^post11-oldx0^post11 == 0 /\ -oldx8^post11+oldx8^0 == 0 /\ -x2^0+oldx2^post11 == 0 /\ -x1^0+oldx1^post11 == 0 /\ oldx9^0-oldx9^post11 == 0 /\ oldx3^post11-x3^0 == 0 /\ -oldx5^post11+x2^post11 == 0 /\ oldx0^post11-x0^0 == 0 /\ x4^post11-oldx7^post11 == 0), cost: 1 11: l12 -> l7 : oldx0^0'=oldx0^post12, oldx1^0'=oldx1^post12, oldx2^0'=oldx2^post12, oldx3^0'=oldx3^post12, oldx4^0'=oldx4^post12, oldx5^0'=oldx5^post12, oldx6^0'=oldx6^post12, oldx7^0'=oldx7^post12, oldx8^0'=oldx8^post12, oldx9^0'=oldx9^post12, x0^0'=x0^post12, x1^0'=x1^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, (0 == 0 /\ x4^post12-oldx7^post12 == 0 /\ -x4^0+oldx4^post12 == 0 /\ -oldx9^post12+oldx9^0 == 0 /\ -x1^0+oldx1^post12 == 0 /\ -oldx5^post12+x2^post12 == 0 /\ -oldx8^post12+oldx8^0 == 0 /\ oldx3^post12-x3^0 == 0 /\ oldx2^post12-x2^0 == 0 /\ oldx0^post12-x0^0 == 0 /\ -oldx0^post12+x0^post12 == 0 /\ oldx0^post12-oldx1^post12 <= 0 /\ -oldx6^post12+x3^post12 == 0 /\ x1^post12-oldx1^post12 == 0), cost: 1 12: l12 -> l11 : oldx0^0'=oldx0^post13, oldx1^0'=oldx1^post13, oldx2^0'=oldx2^post13, oldx3^0'=oldx3^post13, oldx4^0'=oldx4^post13, oldx5^0'=oldx5^post13, oldx6^0'=oldx6^post13, oldx7^0'=oldx7^post13, oldx8^0'=oldx8^post13, oldx9^0'=oldx9^post13, x0^0'=x0^post13, x1^0'=x1^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (0 == 0 /\ -x1^0+oldx1^post13 == 0 /\ -oldx9^post13+oldx9^0 == 0 /\ -x2^0+oldx2^post13 == 0 /\ 1-oldx0^post13+oldx1^post13 <= 0 /\ oldx8^0-oldx8^post13 == 0 /\ x1^post13-oldx1^post13 == 0 /\ -oldx5^post13+x2^post13 == 0 /\ -oldx7^post13+x4^post13 == 0 /\ oldx3^post13-x3^0 == 0 /\ oldx0^post13-x0^0 == 0 /\ -oldx6^post13+x3^post13 == 0 /\ -x4^0+oldx4^post13 == 0 /\ x0^post13-oldx0^post13 == 0), cost: 1 13: l13 -> l12 : oldx0^0'=oldx0^post14, oldx1^0'=oldx1^post14, oldx2^0'=oldx2^post14, oldx3^0'=oldx3^post14, oldx4^0'=oldx4^post14, oldx5^0'=oldx5^post14, oldx6^0'=oldx6^post14, oldx7^0'=oldx7^post14, oldx8^0'=oldx8^post14, oldx9^0'=oldx9^post14, x0^0'=x0^post14, x1^0'=x1^post14, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, (0 == 0 /\ -x2^0+oldx2^post14 == 0 /\ -oldx6^post14+x3^post14 == 0 /\ x1^post14 == 0 /\ -oldx0^post14+x0^post14 == 0 /\ -oldx7^post14+x4^post14 == 0 /\ -oldx8^post14+oldx8^0 == 0 /\ oldx1^post14-x1^0 == 0 /\ oldx3^post14-x3^0 == 0 /\ oldx4^post14-x4^0 == 0 /\ -oldx9^post14+oldx9^0 == 0 /\ -oldx5^post14+x2^post14 == 0 /\ oldx0^post14-x0^0 == 0), cost: 1 14: l14 -> l15 : oldx0^0'=oldx0^post15, oldx1^0'=oldx1^post15, oldx2^0'=oldx2^post15, oldx3^0'=oldx3^post15, oldx4^0'=oldx4^post15, oldx5^0'=oldx5^post15, oldx6^0'=oldx6^post15, oldx7^0'=oldx7^post15, oldx8^0'=oldx8^post15, oldx9^0'=oldx9^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, (0 == 0 /\ -oldx6^post15+x1^post15 == 0 /\ -oldx8^post15+x3^post15 == 0 /\ -x4^0+oldx4^post15 == 0 /\ -x1^0+oldx1^post15 == 0 /\ -oldx7^post15+x2^post15 == 0 /\ -oldx9^post15+x4^post15 == 0 /\ oldx0^post15-x0^0 == 0 /\ oldx2^post15-x2^0 == 0 /\ oldx3^post15-x3^0 == 0 /\ -oldx5^post15+x0^post15 == 0), cost: 1 15: l16 -> l15 : oldx0^0'=oldx0^post16, oldx1^0'=oldx1^post16, oldx2^0'=oldx2^post16, oldx3^0'=oldx3^post16, oldx4^0'=oldx4^post16, oldx5^0'=oldx5^post16, oldx6^0'=oldx6^post16, oldx7^0'=oldx7^post16, oldx8^0'=oldx8^post16, oldx9^0'=oldx9^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, (0 == 0 /\ oldx1^post16-x1^0 == 0 /\ oldx3^post16-x3^0 == 0 /\ -x2^0+oldx2^post16 == 0 /\ x2^post16-oldx7^post16 == 0 /\ oldx0^post16-x0^0 == 0 /\ oldx4^post16-x4^0 == 0 /\ x1^post16-oldx6^post16 == 0 /\ x4^post16-oldx9^post16 == 0 /\ -oldx5^post16+x0^post16 == 0 /\ -oldx8^post16+x3^post16 == 0), cost: 1 16: l16 -> l17 : oldx0^0'=oldx0^post17, oldx1^0'=oldx1^post17, oldx2^0'=oldx2^post17, oldx3^0'=oldx3^post17, oldx4^0'=oldx4^post17, oldx5^0'=oldx5^post17, oldx6^0'=oldx6^post17, oldx7^0'=oldx7^post17, oldx8^0'=oldx8^post17, oldx9^0'=oldx9^post17, x0^0'=x0^post17, x1^0'=x1^post17, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (0 == 0 /\ -oldx5^post17+x2^post17 == 0 /\ oldx3^post17-x3^0 == 0 /\ oldx8^0-oldx8^post17 == 0 /\ -oldx9^post17+oldx9^0 == 0 /\ -x4^0+oldx4^post17 == 0 /\ oldx0^post17-x0^0 == 0 /\ oldx2^post17-x2^0 == 0 /\ -oldx7^post17+x4^post17 == 0 /\ -oldx1^post17+x1^post17 == 0 /\ -oldx6^post17+x3^post17 == 0 /\ -1-oldx0^post17+x0^post17 == 0 /\ -x1^0+oldx1^post17 == 0), cost: 1 19: l17 -> l18 : oldx0^0'=oldx0^post20, oldx1^0'=oldx1^post20, oldx2^0'=oldx2^post20, oldx3^0'=oldx3^post20, oldx4^0'=oldx4^post20, oldx5^0'=oldx5^post20, oldx6^0'=oldx6^post20, oldx7^0'=oldx7^post20, oldx8^0'=oldx8^post20, oldx9^0'=oldx9^post20, x0^0'=x0^post20, x1^0'=x1^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (0 == 0 /\ oldx3^post20-x3^0 == 0 /\ -oldx8^post20+oldx8^0 == 0 /\ oldx1^post20-x1^0 == 0 /\ -oldx0^post20+x0^post20 == 0 /\ oldx0^post20-x0^0 == 0 /\ -oldx1^post20+x1^post20 == 0 /\ -x2^0+oldx2^post20 == 0 /\ -oldx9^post20+oldx9^0 == 0 /\ oldx4^post20-x4^0 == 0 /\ -oldx6^post20+x3^post20 == 0 /\ x4^post20-oldx7^post20 == 0 /\ -oldx5^post20+x2^post20 == 0), cost: 1 17: l18 -> l14 : oldx0^0'=oldx0^post18, oldx1^0'=oldx1^post18, oldx2^0'=oldx2^post18, oldx3^0'=oldx3^post18, oldx4^0'=oldx4^post18, oldx5^0'=oldx5^post18, oldx6^0'=oldx6^post18, oldx7^0'=oldx7^post18, oldx8^0'=oldx8^post18, oldx9^0'=oldx9^post18, x0^0'=x0^post18, x1^0'=x1^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, (0 == 0 /\ oldx1^post18-x1^0 == 0 /\ -oldx7^post18+x4^post18 == 0 /\ oldx9^0-oldx9^post18 == 0 /\ -oldx0^post18+x0^post18 == 0 /\ -x3^0+oldx3^post18 == 0 /\ oldx0^post18-x0^0 == 0 /\ oldx4^post18-x4^0 == 0 /\ -x2^0+oldx2^post18 == 0 /\ -oldx1^post18+x1^post18 == 0 /\ 1-oldx0^post18+oldx1^post18 <= 0 /\ -oldx5^post18+x2^post18 == 0 /\ oldx8^0-oldx8^post18 == 0 /\ x3^post18-oldx6^post18 == 0), cost: 1 18: l18 -> l16 : oldx0^0'=oldx0^post19, oldx1^0'=oldx1^post19, oldx2^0'=oldx2^post19, oldx3^0'=oldx3^post19, oldx4^0'=oldx4^post19, oldx5^0'=oldx5^post19, oldx6^0'=oldx6^post19, oldx7^0'=oldx7^post19, oldx8^0'=oldx8^post19, oldx9^0'=oldx9^post19, x0^0'=x0^post19, x1^0'=x1^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (0 == 0 /\ -oldx6^post19+x3^post19 == 0 /\ oldx3^post19-x3^0 == 0 /\ -oldx1^post19+x1^post19 == 0 /\ -x2^0+oldx2^post19 == 0 /\ -oldx9^post19+oldx9^0 == 0 /\ oldx1^post19-x1^0 == 0 /\ -oldx5^post19+x2^post19 == 0 /\ oldx4^post19-x4^0 == 0 /\ oldx0^post19-x0^0 == 0 /\ -oldx0^post19+x0^post19 == 0 /\ -oldx1^post19+oldx0^post19 <= 0 /\ -oldx8^post19+oldx8^0 == 0 /\ x4^post19-oldx7^post19 == 0), cost: 1 20: l19 -> l5 : oldx0^0'=oldx0^post21, oldx1^0'=oldx1^post21, oldx2^0'=oldx2^post21, oldx3^0'=oldx3^post21, oldx4^0'=oldx4^post21, oldx5^0'=oldx5^post21, oldx6^0'=oldx6^post21, oldx7^0'=oldx7^post21, oldx8^0'=oldx8^post21, oldx9^0'=oldx9^post21, x0^0'=x0^post21, x1^0'=x1^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, (0 == 0 /\ oldx0^post21-x0^0 == 0 /\ oldx3^post21-x3^0 == 0 /\ oldx8^0-oldx8^post21 == 0 /\ -oldx1^post21+x1^post21 == 0 /\ -x1^0+oldx1^post21 == 0 /\ -oldx7^post21+x4^post21 == 0 /\ -oldx9^post21+oldx9^0 == 0 /\ -oldx6^post21+x3^post21 == 0 /\ -oldx5^post21+x2^post21 == 0 /\ 1+oldx0^post21-oldx1^post21 <= 0 /\ -oldx0^post21+x0^post21 == 0 /\ oldx2^post21-x2^0 == 0 /\ -x4^0+oldx4^post21 == 0), cost: 1 21: l19 -> l9 : oldx0^0'=oldx0^post22, oldx1^0'=oldx1^post22, oldx2^0'=oldx2^post22, oldx3^0'=oldx3^post22, oldx4^0'=oldx4^post22, oldx5^0'=oldx5^post22, oldx6^0'=oldx6^post22, oldx7^0'=oldx7^post22, oldx8^0'=oldx8^post22, oldx9^0'=oldx9^post22, x0^0'=x0^post22, x1^0'=x1^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (0 == 0 /\ oldx0^post22-x0^0 == 0 /\ -oldx5^post22+x2^post22 == 0 /\ x1^post22-oldx1^post22 == 0 /\ oldx9^0-oldx9^post22 == 0 /\ -oldx7^post22+x4^post22 == 0 /\ -oldx0^post22+oldx1^post22 <= 0 /\ -x2^0+oldx2^post22 == 0 /\ oldx1^post22-x1^0 == 0 /\ oldx4^post22-x4^0 == 0 /\ x3^post22-oldx6^post22 == 0 /\ -x3^0+oldx3^post22 == 0 /\ x0^post22-oldx0^post22 == 0 /\ oldx8^0-oldx8^post22 == 0), cost: 1 22: l20 -> l21 : oldx0^0'=oldx0^post23, oldx1^0'=oldx1^post23, oldx2^0'=oldx2^post23, oldx3^0'=oldx3^post23, oldx4^0'=oldx4^post23, oldx5^0'=oldx5^post23, oldx6^0'=oldx6^post23, oldx7^0'=oldx7^post23, oldx8^0'=oldx8^post23, oldx9^0'=oldx9^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, (0 == 0 /\ oldx0^post23-x0^0 == 0 /\ x4^post23-oldx9^post23 == 0 /\ -x2^0+oldx2^post23 == 0 /\ x2^post23-oldx7^post23 == 0 /\ oldx4^post23-x4^0 == 0 /\ x1^post23-oldx6^post23 == 0 /\ oldx3^post23-x3^0 == 0 /\ -x1^0+oldx1^post23 == 0 /\ -oldx8^post23+x3^post23 == 0 /\ -oldx5^post23+x0^post23 == 0), cost: 1 23: l22 -> l21 : oldx0^0'=oldx0^post24, oldx1^0'=oldx1^post24, oldx2^0'=oldx2^post24, oldx3^0'=oldx3^post24, oldx4^0'=oldx4^post24, oldx5^0'=oldx5^post24, oldx6^0'=oldx6^post24, oldx7^0'=oldx7^post24, oldx8^0'=oldx8^post24, oldx9^0'=oldx9^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, (0 == 0 /\ x4^post24-oldx9^post24 == 0 /\ oldx2^post24-x2^0 == 0 /\ -x1^0+oldx1^post24 == 0 /\ oldx0^post24-x0^0 == 0 /\ -oldx8^post24+x3^post24 == 0 /\ x2^post24-oldx7^post24 == 0 /\ -x4^0+oldx4^post24 == 0 /\ oldx3^post24-x3^0 == 0 /\ -oldx5^post24+x0^post24 == 0 /\ x1^post24-oldx6^post24 == 0), cost: 1 24: l22 -> l23 : oldx0^0'=oldx0^post25, oldx1^0'=oldx1^post25, oldx2^0'=oldx2^post25, oldx3^0'=oldx3^post25, oldx4^0'=oldx4^post25, oldx5^0'=oldx5^post25, oldx6^0'=oldx6^post25, oldx7^0'=oldx7^post25, oldx8^0'=oldx8^post25, oldx9^0'=oldx9^post25, x0^0'=x0^post25, x1^0'=x1^post25, x2^0'=x2^post25, x3^0'=x3^post25, x4^0'=x4^post25, (0 == 0 /\ oldx2^post25-x2^0 == 0 /\ oldx0^post25-x0^0 == 0 /\ -oldx1^post25+x1^post25 == 0 /\ -x1^0+oldx1^post25 == 0 /\ oldx8^0-oldx8^post25 == 0 /\ -oldx9^post25+oldx9^0 == 0 /\ -oldx2^post25+x2^post25 == 0 /\ -1-oldx0^post25+x0^post25 == 0 /\ oldx3^post25-x3^0 == 0 /\ x3^post25-oldx5^post25 == 0 /\ oldx7^0-oldx7^post25 == 0 /\ -x4^0+oldx4^post25 == 0 /\ -oldx6^post25+x4^post25 == 0), cost: 1 27: l23 -> l24 : oldx0^0'=oldx0^post28, oldx1^0'=oldx1^post28, oldx2^0'=oldx2^post28, oldx3^0'=oldx3^post28, oldx4^0'=oldx4^post28, oldx5^0'=oldx5^post28, oldx6^0'=oldx6^post28, oldx7^0'=oldx7^post28, oldx8^0'=oldx8^post28, oldx9^0'=oldx9^post28, x0^0'=x0^post28, x1^0'=x1^post28, x2^0'=x2^post28, x3^0'=x3^post28, x4^0'=x4^post28, (0 == 0 /\ oldx0^post28-x0^0 == 0 /\ oldx2^post28-x2^0 == 0 /\ -oldx0^post28+x0^post28 == 0 /\ oldx8^0-oldx8^post28 == 0 /\ -x1^0+oldx1^post28 == 0 /\ -oldx9^post28+oldx9^0 == 0 /\ x1^post28-oldx1^post28 == 0 /\ x3^post28-oldx5^post28 == 0 /\ oldx3^post28-x3^0 == 0 /\ -x4^0+oldx4^post28 == 0 /\ x4^post28-oldx6^post28 == 0 /\ oldx7^0-oldx7^post28 == 0 /\ -oldx2^post28+x2^post28 == 0), cost: 1 25: l24 -> l20 : oldx0^0'=oldx0^post26, oldx1^0'=oldx1^post26, oldx2^0'=oldx2^post26, oldx3^0'=oldx3^post26, oldx4^0'=oldx4^post26, oldx5^0'=oldx5^post26, oldx6^0'=oldx6^post26, oldx7^0'=oldx7^post26, oldx8^0'=oldx8^post26, oldx9^0'=oldx9^post26, x0^0'=x0^post26, x1^0'=x1^post26, x2^0'=x2^post26, x3^0'=x3^post26, x4^0'=x4^post26, (0 == 0 /\ x2^post26-oldx2^post26 == 0 /\ x3^post26-oldx5^post26 == 0 /\ oldx0^post26-x0^0 == 0 /\ oldx8^0-oldx8^post26 == 0 /\ x1^post26-oldx1^post26 == 0 /\ x0^post26-oldx0^post26 == 0 /\ 1-oldx0^post26+oldx1^post26 <= 0 /\ oldx9^0-oldx9^post26 == 0 /\ -x2^0+oldx2^post26 == 0 /\ oldx3^post26-x3^0 == 0 /\ oldx1^post26-x1^0 == 0 /\ oldx7^0-oldx7^post26 == 0 /\ x4^post26-oldx6^post26 == 0 /\ oldx4^post26-x4^0 == 0), cost: 1 26: l24 -> l22 : oldx0^0'=oldx0^post27, oldx1^0'=oldx1^post27, oldx2^0'=oldx2^post27, oldx3^0'=oldx3^post27, oldx4^0'=oldx4^post27, oldx5^0'=oldx5^post27, oldx6^0'=oldx6^post27, oldx7^0'=oldx7^post27, oldx8^0'=oldx8^post27, oldx9^0'=oldx9^post27, x0^0'=x0^post27, x1^0'=x1^post27, x2^0'=x2^post27, x3^0'=x3^post27, x4^0'=x4^post27, (0 == 0 /\ -oldx8^post27+oldx8^0 == 0 /\ x4^post27-oldx6^post27 == 0 /\ -x4^0+oldx4^post27 == 0 /\ x1^post27-oldx1^post27 == 0 /\ oldx0^post27-oldx1^post27 <= 0 /\ oldx0^post27-x0^0 == 0 /\ -oldx0^post27+x0^post27 == 0 /\ oldx7^0-oldx7^post27 == 0 /\ -oldx9^post27+oldx9^0 == 0 /\ -oldx5^post27+x3^post27 == 0 /\ -x2^0+oldx2^post27 == 0 /\ oldx3^post27-x3^0 == 0 /\ -x1^0+oldx1^post27 == 0 /\ -oldx2^post27+x2^post27 == 0), cost: 1 28: l25 -> l26 : oldx0^0'=oldx0^post29, oldx1^0'=oldx1^post29, oldx2^0'=oldx2^post29, oldx3^0'=oldx3^post29, oldx4^0'=oldx4^post29, oldx5^0'=oldx5^post29, oldx6^0'=oldx6^post29, oldx7^0'=oldx7^post29, oldx8^0'=oldx8^post29, oldx9^0'=oldx9^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, (0 == 0 /\ -x2^0+oldx2^post29 == 0 /\ -oldx6^post29+x1^post29 == 0 /\ oldx0^post29-x0^0 == 0 /\ -x1^0+oldx1^post29 == 0 /\ -oldx9^post29+x4^post29 == 0 /\ x2^post29-oldx7^post29 == 0 /\ x3^post29-oldx8^post29 == 0 /\ -x4^0+oldx4^post29 == 0 /\ oldx3^post29-x3^0 == 0 /\ x0^post29-oldx5^post29 == 0), cost: 1 29: l27 -> l26 : oldx0^0'=oldx0^post30, oldx1^0'=oldx1^post30, oldx2^0'=oldx2^post30, oldx3^0'=oldx3^post30, oldx4^0'=oldx4^post30, oldx5^0'=oldx5^post30, oldx6^0'=oldx6^post30, oldx7^0'=oldx7^post30, oldx8^0'=oldx8^post30, oldx9^0'=oldx9^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, (0 == 0 /\ x1^post30-oldx6^post30 == 0 /\ x3^post30-oldx8^post30 == 0 /\ -oldx7^post30+x2^post30 == 0 /\ -x2^0+oldx2^post30 == 0 /\ x0^post30-oldx5^post30 == 0 /\ oldx0^post30-x0^0 == 0 /\ oldx1^post30-x1^0 == 0 /\ oldx4^post30-x4^0 == 0 /\ x4^post30-oldx9^post30 == 0 /\ oldx3^post30-x3^0 == 0), cost: 1 30: l27 -> l28 : oldx0^0'=oldx0^post31, oldx1^0'=oldx1^post31, oldx2^0'=oldx2^post31, oldx3^0'=oldx3^post31, oldx4^0'=oldx4^post31, oldx5^0'=oldx5^post31, oldx6^0'=oldx6^post31, oldx7^0'=oldx7^post31, oldx8^0'=oldx8^post31, oldx9^0'=oldx9^post31, x0^0'=x0^post31, x1^0'=x1^post31, x2^0'=x2^post31, x3^0'=x3^post31, x4^0'=x4^post31, (0 == 0 /\ oldx0^post31-x0^0 == 0 /\ -x4^0+oldx4^post31 == 0 /\ x4^post31-oldx5^post31 == 0 /\ oldx7^0-oldx7^post31 == 0 /\ -x2^0+oldx2^post31 == 0 /\ -oldx8^post31+oldx8^0 == 0 /\ -oldx6^post31+oldx6^0 == 0 /\ oldx3^post31-x3^0 == 0 /\ x1^post31-oldx1^post31 == 0 /\ -x1^0+oldx1^post31 == 0 /\ -oldx2^post31+x2^post31 == 0 /\ -oldx9^post31+oldx9^0 == 0 /\ 1-oldx0^post31+x0^post31 == 0 /\ -oldx3^post31+x3^post31 == 0), cost: 1 33: l28 -> l29 : oldx0^0'=oldx0^post34, oldx1^0'=oldx1^post34, oldx2^0'=oldx2^post34, oldx3^0'=oldx3^post34, oldx4^0'=oldx4^post34, oldx5^0'=oldx5^post34, oldx6^0'=oldx6^post34, oldx7^0'=oldx7^post34, oldx8^0'=oldx8^post34, oldx9^0'=oldx9^post34, x0^0'=x0^post34, x1^0'=x1^post34, x2^0'=x2^post34, x3^0'=x3^post34, x4^0'=x4^post34, (0 == 0 /\ oldx0^post34-x0^0 == 0 /\ oldx4^post34-x4^0 == 0 /\ -oldx2^post34+x2^post34 == 0 /\ -oldx0^post34+x0^post34 == 0 /\ x4^post34-oldx5^post34 == 0 /\ -oldx7^post34+oldx7^0 == 0 /\ -oldx6^post34+oldx6^0 == 0 /\ -oldx1^post34+x1^post34 == 0 /\ oldx3^post34-x3^0 == 0 /\ -oldx8^post34+oldx8^0 == 0 /\ oldx1^post34-x1^0 == 0 /\ -oldx3^post34+x3^post34 == 0 /\ oldx9^0-oldx9^post34 == 0 /\ -x2^0+oldx2^post34 == 0), cost: 1 31: l29 -> l25 : oldx0^0'=oldx0^post32, oldx1^0'=oldx1^post32, oldx2^0'=oldx2^post32, oldx3^0'=oldx3^post32, oldx4^0'=oldx4^post32, oldx5^0'=oldx5^post32, oldx6^0'=oldx6^post32, oldx7^0'=oldx7^post32, oldx8^0'=oldx8^post32, oldx9^0'=oldx9^post32, x0^0'=x0^post32, x1^0'=x1^post32, x2^0'=x2^post32, x3^0'=x3^post32, x4^0'=x4^post32, (0 == 0 /\ oldx0^post32-x0^0 == 0 /\ oldx2^post32-x2^0 == 0 /\ -oldx2^post32+x2^post32 == 0 /\ -x1^0+oldx1^post32 == 0 /\ -oldx0^post32+x0^post32 == 0 /\ oldx8^0-oldx8^post32 == 0 /\ -oldx3^post32+x3^post32 == 0 /\ -oldx6^post32+oldx6^0 == 0 /\ -oldx1^post32+x1^post32 == 0 /\ 1+oldx0^post32-oldx1^post32 <= 0 /\ oldx3^post32-x3^0 == 0 /\ -x4^0+oldx4^post32 == 0 /\ -oldx9^post32+oldx9^0 == 0 /\ x4^post32-oldx5^post32 == 0 /\ oldx7^0-oldx7^post32 == 0), cost: 1 32: l29 -> l27 : oldx0^0'=oldx0^post33, oldx1^0'=oldx1^post33, oldx2^0'=oldx2^post33, oldx3^0'=oldx3^post33, oldx4^0'=oldx4^post33, oldx5^0'=oldx5^post33, oldx6^0'=oldx6^post33, oldx7^0'=oldx7^post33, oldx8^0'=oldx8^post33, oldx9^0'=oldx9^post33, x0^0'=x0^post33, x1^0'=x1^post33, x2^0'=x2^post33, x3^0'=x3^post33, x4^0'=x4^post33, (0 == 0 /\ oldx0^post33-x0^0 == 0 /\ oldx4^post33-x4^0 == 0 /\ oldx9^0-oldx9^post33 == 0 /\ -oldx3^post33+x3^post33 == 0 /\ x4^post33-oldx5^post33 == 0 /\ -oldx0^post33+oldx1^post33 <= 0 /\ oldx7^0-oldx7^post33 == 0 /\ -x2^0+oldx2^post33 == 0 /\ oldx1^post33-x1^0 == 0 /\ oldx3^post33-x3^0 == 0 /\ -oldx2^post33+x2^post33 == 0 /\ -oldx0^post33+x0^post33 == 0 /\ oldx6^0-oldx6^post33 == 0 /\ -oldx1^post33+x1^post33 == 0 /\ oldx8^0-oldx8^post33 == 0), cost: 1 35: l30 -> l13 : oldx0^0'=oldx0^post36, oldx1^0'=oldx1^post36, oldx2^0'=oldx2^post36, oldx3^0'=oldx3^post36, oldx4^0'=oldx4^post36, oldx5^0'=oldx5^post36, oldx6^0'=oldx6^post36, oldx7^0'=oldx7^post36, oldx8^0'=oldx8^post36, oldx9^0'=oldx9^post36, x0^0'=x0^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, (0 == 0 /\ oldx9^0-oldx9^post36 == 0 /\ oldx4^post36-x4^0 == 0 /\ x1^post36-oldx5^post36 == 0 /\ -x2^0+oldx2^post36 == 0 /\ x3^post36-oldx7^post36 == 0 /\ -oldx6^post36+x2^post36 == 0 /\ oldx3^post36-x3^0 == 0 /\ -oldx0^post36+x0^post36 == 0 /\ oldx0^post36-x0^0 == 0 /\ oldx1^post36-x1^0 == 0 /\ x4^post36-oldx8^post36 == 0), cost: 1 36: l30 -> l0 : oldx0^0'=oldx0^post37, oldx1^0'=oldx1^post37, oldx2^0'=oldx2^post37, oldx3^0'=oldx3^post37, oldx4^0'=oldx4^post37, oldx5^0'=oldx5^post37, oldx6^0'=oldx6^post37, oldx7^0'=oldx7^post37, oldx8^0'=oldx8^post37, oldx9^0'=oldx9^post37, x0^0'=x0^post37, x1^0'=x1^post37, x2^0'=x2^post37, x3^0'=x3^post37, x4^0'=x4^post37, (-x3^post37+x3^0 == 0 /\ x2^0-x2^post37 == 0 /\ oldx4^0-oldx4^post37 == 0 /\ oldx5^0-oldx5^post37 == 0 /\ -x0^post37+x0^0 == 0 /\ -x1^post37+x1^0 == 0 /\ oldx9^0-oldx9^post37 == 0 /\ x4^0-x4^post37 == 0 /\ oldx7^0-oldx7^post37 == 0 /\ oldx2^0-oldx2^post37 == 0 /\ -oldx1^post37+oldx1^0 == 0 /\ oldx6^0-oldx6^post37 == 0 /\ -oldx3^post37+oldx3^0 == 0 /\ oldx8^0-oldx8^post37 == 0 /\ -oldx0^post37+oldx0^0 == 0), cost: 1 37: l30 -> l2 : oldx0^0'=oldx0^post38, oldx1^0'=oldx1^post38, oldx2^0'=oldx2^post38, oldx3^0'=oldx3^post38, oldx4^0'=oldx4^post38, oldx5^0'=oldx5^post38, oldx6^0'=oldx6^post38, oldx7^0'=oldx7^post38, oldx8^0'=oldx8^post38, oldx9^0'=oldx9^post38, x0^0'=x0^post38, x1^0'=x1^post38, x2^0'=x2^post38, x3^0'=x3^post38, x4^0'=x4^post38, (-x1^post38+x1^0 == 0 /\ -x4^post38+x4^0 == 0 /\ -x0^post38+x0^0 == 0 /\ -oldx4^post38+oldx4^0 == 0 /\ -oldx7^post38+oldx7^0 == 0 /\ -oldx6^post38+oldx6^0 == 0 /\ -oldx2^post38+oldx2^0 == 0 /\ -oldx5^post38+oldx5^0 == 0 /\ x2^0-x2^post38 == 0 /\ -oldx8^post38+oldx8^0 == 0 /\ oldx9^0-oldx9^post38 == 0 /\ -oldx3^post38+oldx3^0 == 0 /\ -oldx0^post38+oldx0^0 == 0 /\ -oldx1^post38+oldx1^0 == 0 /\ x3^0-x3^post38 == 0), cost: 1 38: l30 -> l4 : oldx0^0'=oldx0^post39, oldx1^0'=oldx1^post39, oldx2^0'=oldx2^post39, oldx3^0'=oldx3^post39, oldx4^0'=oldx4^post39, oldx5^0'=oldx5^post39, oldx6^0'=oldx6^post39, oldx7^0'=oldx7^post39, oldx8^0'=oldx8^post39, oldx9^0'=oldx9^post39, x0^0'=x0^post39, x1^0'=x1^post39, x2^0'=x2^post39, x3^0'=x3^post39, x4^0'=x4^post39, (oldx8^0-oldx8^post39 == 0 /\ -x3^post39+x3^0 == 0 /\ -oldx3^post39+oldx3^0 == 0 /\ -x0^post39+x0^0 == 0 /\ -x2^post39+x2^0 == 0 /\ -oldx6^post39+oldx6^0 == 0 /\ -oldx2^post39+oldx2^0 == 0 /\ oldx5^0-oldx5^post39 == 0 /\ x1^0-x1^post39 == 0 /\ -oldx0^post39+oldx0^0 == 0 /\ oldx7^0-oldx7^post39 == 0 /\ oldx1^0-oldx1^post39 == 0 /\ x4^0-x4^post39 == 0 /\ -oldx9^post39+oldx9^0 == 0 /\ oldx4^0-oldx4^post39 == 0), cost: 1 39: l30 -> l3 : oldx0^0'=oldx0^post40, oldx1^0'=oldx1^post40, oldx2^0'=oldx2^post40, oldx3^0'=oldx3^post40, oldx4^0'=oldx4^post40, oldx5^0'=oldx5^post40, oldx6^0'=oldx6^post40, oldx7^0'=oldx7^post40, oldx8^0'=oldx8^post40, oldx9^0'=oldx9^post40, x0^0'=x0^post40, x1^0'=x1^post40, x2^0'=x2^post40, x3^0'=x3^post40, x4^0'=x4^post40, (oldx3^0-oldx3^post40 == 0 /\ x2^0-x2^post40 == 0 /\ oldx5^0-oldx5^post40 == 0 /\ -x0^post40+x0^0 == 0 /\ -x3^post40+x3^0 == 0 /\ -x1^post40+x1^0 == 0 /\ oldx4^0-oldx4^post40 == 0 /\ oldx9^0-oldx9^post40 == 0 /\ oldx7^0-oldx7^post40 == 0 /\ x4^0-x4^post40 == 0 /\ oldx2^0-oldx2^post40 == 0 /\ -oldx6^post40+oldx6^0 == 0 /\ oldx1^0-oldx1^post40 == 0 /\ oldx8^0-oldx8^post40 == 0 /\ -oldx0^post40+oldx0^0 == 0), cost: 1 40: l30 -> l6 : oldx0^0'=oldx0^post41, oldx1^0'=oldx1^post41, oldx2^0'=oldx2^post41, oldx3^0'=oldx3^post41, oldx4^0'=oldx4^post41, oldx5^0'=oldx5^post41, oldx6^0'=oldx6^post41, oldx7^0'=oldx7^post41, oldx8^0'=oldx8^post41, oldx9^0'=oldx9^post41, x0^0'=x0^post41, x1^0'=x1^post41, x2^0'=x2^post41, x3^0'=x3^post41, x4^0'=x4^post41, (-x3^post41+x3^0 == 0 /\ -x0^post41+x0^0 == 0 /\ -x1^post41+x1^0 == 0 /\ -x4^post41+x4^0 == 0 /\ x2^0-x2^post41 == 0 /\ oldx9^0-oldx9^post41 == 0 /\ -oldx3^post41+oldx3^0 == 0 /\ -oldx4^post41+oldx4^0 == 0 /\ -oldx5^post41+oldx5^0 == 0 /\ oldx7^0-oldx7^post41 == 0 /\ -oldx2^post41+oldx2^0 == 0 /\ -oldx1^post41+oldx1^0 == 0 /\ oldx6^0-oldx6^post41 == 0 /\ -oldx0^post41+oldx0^0 == 0 /\ oldx8^0-oldx8^post41 == 0), cost: 1 41: l30 -> l5 : oldx0^0'=oldx0^post42, oldx1^0'=oldx1^post42, oldx2^0'=oldx2^post42, oldx3^0'=oldx3^post42, oldx4^0'=oldx4^post42, oldx5^0'=oldx5^post42, oldx6^0'=oldx6^post42, oldx7^0'=oldx7^post42, oldx8^0'=oldx8^post42, oldx9^0'=oldx9^post42, x0^0'=x0^post42, x1^0'=x1^post42, x2^0'=x2^post42, x3^0'=x3^post42, x4^0'=x4^post42, (-x0^post42+x0^0 == 0 /\ -x4^post42+x4^0 == 0 /\ -oldx5^post42+oldx5^0 == 0 /\ -x1^post42+x1^0 == 0 /\ oldx4^0-oldx4^post42 == 0 /\ -oldx3^post42+oldx3^0 == 0 /\ -oldx2^post42+oldx2^0 == 0 /\ -oldx7^post42+oldx7^0 == 0 /\ x2^0-x2^post42 == 0 /\ -oldx8^post42+oldx8^0 == 0 /\ oldx9^0-oldx9^post42 == 0 /\ -oldx0^post42+oldx0^0 == 0 /\ -oldx6^post42+oldx6^0 == 0 /\ -oldx1^post42+oldx1^0 == 0 /\ x3^0-x3^post42 == 0), cost: 1 42: l30 -> l8 : oldx0^0'=oldx0^post43, oldx1^0'=oldx1^post43, oldx2^0'=oldx2^post43, oldx3^0'=oldx3^post43, oldx4^0'=oldx4^post43, oldx5^0'=oldx5^post43, oldx6^0'=oldx6^post43, oldx7^0'=oldx7^post43, oldx8^0'=oldx8^post43, oldx9^0'=oldx9^post43, x0^0'=x0^post43, x1^0'=x1^post43, x2^0'=x2^post43, x3^0'=x3^post43, x4^0'=x4^post43, (-oldx5^post43+oldx5^0 == 0 /\ -x2^post43+x2^0 == 0 /\ -x3^post43+x3^0 == 0 /\ -x0^post43+x0^0 == 0 /\ -oldx3^post43+oldx3^0 == 0 /\ oldx8^0-oldx8^post43 == 0 /\ -oldx2^post43+oldx2^0 == 0 /\ x1^0-x1^post43 == 0 /\ oldx7^0-oldx7^post43 == 0 /\ x4^0-x4^post43 == 0 /\ -oldx0^post43+oldx0^0 == 0 /\ -oldx9^post43+oldx9^0 == 0 /\ oldx4^0-oldx4^post43 == 0 /\ -oldx6^post43+oldx6^0 == 0 /\ oldx1^0-oldx1^post43 == 0), cost: 1 43: l30 -> l7 : oldx0^0'=oldx0^post44, oldx1^0'=oldx1^post44, oldx2^0'=oldx2^post44, oldx3^0'=oldx3^post44, oldx4^0'=oldx4^post44, oldx5^0'=oldx5^post44, oldx6^0'=oldx6^post44, oldx7^0'=oldx7^post44, oldx8^0'=oldx8^post44, oldx9^0'=oldx9^post44, x0^0'=x0^post44, x1^0'=x1^post44, x2^0'=x2^post44, x3^0'=x3^post44, x4^0'=x4^post44, (x2^0-x2^post44 == 0 /\ oldx3^0-oldx3^post44 == 0 /\ -x3^post44+x3^0 == 0 /\ oldx8^0-oldx8^post44 == 0 /\ oldx4^0-oldx4^post44 == 0 /\ -x1^post44+x1^0 == 0 /\ -x0^post44+x0^0 == 0 /\ oldx9^0-oldx9^post44 == 0 /\ x4^0-x4^post44 == 0 /\ oldx5^0-oldx5^post44 == 0 /\ oldx2^0-oldx2^post44 == 0 /\ oldx7^0-oldx7^post44 == 0 /\ -oldx0^post44+oldx0^0 == 0 /\ oldx1^0-oldx1^post44 == 0 /\ oldx6^0-oldx6^post44 == 0), cost: 1 44: l30 -> l9 : oldx0^0'=oldx0^post45, oldx1^0'=oldx1^post45, oldx2^0'=oldx2^post45, oldx3^0'=oldx3^post45, oldx4^0'=oldx4^post45, oldx5^0'=oldx5^post45, oldx6^0'=oldx6^post45, oldx7^0'=oldx7^post45, oldx8^0'=oldx8^post45, oldx9^0'=oldx9^post45, x0^0'=x0^post45, x1^0'=x1^post45, x2^0'=x2^post45, x3^0'=x3^post45, x4^0'=x4^post45, (-oldx8^post45+oldx8^0 == 0 /\ -oldx6^post45+oldx6^0 == 0 /\ -x1^post45+x1^0 == 0 /\ -x0^post45+x0^0 == 0 /\ x2^0-x2^post45 == 0 /\ -oldx3^post45+oldx3^0 == 0 /\ oldx7^0-oldx7^post45 == 0 /\ -oldx4^post45+oldx4^0 == 0 /\ -oldx9^post45+oldx9^0 == 0 /\ -oldx5^post45+oldx5^0 == 0 /\ -x4^post45+x4^0 == 0 /\ -oldx2^post45+oldx2^0 == 0 /\ -oldx0^post45+oldx0^0 == 0 /\ -x3^post45+x3^0 == 0 /\ -oldx1^post45+oldx1^0 == 0), cost: 1 45: l30 -> l11 : oldx0^0'=oldx0^post46, oldx1^0'=oldx1^post46, oldx2^0'=oldx2^post46, oldx3^0'=oldx3^post46, oldx4^0'=oldx4^post46, oldx5^0'=oldx5^post46, oldx6^0'=oldx6^post46, oldx7^0'=oldx7^post46, oldx8^0'=oldx8^post46, oldx9^0'=oldx9^post46, x0^0'=x0^post46, x1^0'=x1^post46, x2^0'=x2^post46, x3^0'=x3^post46, x4^0'=x4^post46, (-oldx5^post46+oldx5^0 == 0 /\ -x1^post46+x1^0 == 0 /\ -oldx8^post46+oldx8^0 == 0 /\ oldx7^0-oldx7^post46 == 0 /\ -oldx0^post46+oldx0^0 == 0 /\ -oldx3^post46+oldx3^0 == 0 /\ oldx4^0-oldx4^post46 == 0 /\ -oldx9^post46+oldx9^0 == 0 /\ -x4^post46+x4^0 == 0 /\ -oldx2^post46+oldx2^0 == 0 /\ -x0^post46+x0^0 == 0 /\ x3^0-x3^post46 == 0 /\ -oldx1^post46+oldx1^0 == 0 /\ x2^0-x2^post46 == 0 /\ -oldx6^post46+oldx6^0 == 0), cost: 1 46: l30 -> l12 : oldx0^0'=oldx0^post47, oldx1^0'=oldx1^post47, oldx2^0'=oldx2^post47, oldx3^0'=oldx3^post47, oldx4^0'=oldx4^post47, oldx5^0'=oldx5^post47, oldx6^0'=oldx6^post47, oldx7^0'=oldx7^post47, oldx8^0'=oldx8^post47, oldx9^0'=oldx9^post47, x0^0'=x0^post47, x1^0'=x1^post47, x2^0'=x2^post47, x3^0'=x3^post47, x4^0'=x4^post47, (-oldx5^post47+oldx5^0 == 0 /\ -x3^post47+x3^0 == 0 /\ -x2^post47+x2^0 == 0 /\ oldx8^0-oldx8^post47 == 0 /\ -oldx0^post47+oldx0^0 == 0 /\ -oldx3^post47+oldx3^0 == 0 /\ -oldx2^post47+oldx2^0 == 0 /\ -oldx9^post47+oldx9^0 == 0 /\ -x0^post47+x0^0 == 0 /\ oldx7^0-oldx7^post47 == 0 /\ x1^0-x1^post47 == 0 /\ x4^0-x4^post47 == 0 /\ oldx4^0-oldx4^post47 == 0 /\ -oldx6^post47+oldx6^0 == 0 /\ oldx1^0-oldx1^post47 == 0), cost: 1 47: l30 -> l13 : oldx0^0'=oldx0^post48, oldx1^0'=oldx1^post48, oldx2^0'=oldx2^post48, oldx3^0'=oldx3^post48, oldx4^0'=oldx4^post48, oldx5^0'=oldx5^post48, oldx6^0'=oldx6^post48, oldx7^0'=oldx7^post48, oldx8^0'=oldx8^post48, oldx9^0'=oldx9^post48, x0^0'=x0^post48, x1^0'=x1^post48, x2^0'=x2^post48, x3^0'=x3^post48, x4^0'=x4^post48, (oldx3^0-oldx3^post48 == 0 /\ -x4^post48+x4^0 == 0 /\ -x3^post48+x3^0 == 0 /\ oldx8^0-oldx8^post48 == 0 /\ oldx5^0-oldx5^post48 == 0 /\ oldx2^0-oldx2^post48 == 0 /\ oldx9^0-oldx9^post48 == 0 /\ oldx6^0-oldx6^post48 == 0 /\ -x1^post48+x1^0 == 0 /\ -x0^post48+x0^0 == 0 /\ oldx7^0-oldx7^post48 == 0 /\ -oldx0^post48+oldx0^0 == 0 /\ x2^0-x2^post48 == 0 /\ oldx1^0-oldx1^post48 == 0 /\ oldx4^0-oldx4^post48 == 0), cost: 1 48: l30 -> l15 : oldx0^0'=oldx0^post49, oldx1^0'=oldx1^post49, oldx2^0'=oldx2^post49, oldx3^0'=oldx3^post49, oldx4^0'=oldx4^post49, oldx5^0'=oldx5^post49, oldx6^0'=oldx6^post49, oldx7^0'=oldx7^post49, oldx8^0'=oldx8^post49, oldx9^0'=oldx9^post49, x0^0'=x0^post49, x1^0'=x1^post49, x2^0'=x2^post49, x3^0'=x3^post49, x4^0'=x4^post49, (-oldx8^post49+oldx8^0 == 0 /\ -oldx5^post49+oldx5^0 == 0 /\ oldx7^0-oldx7^post49 == 0 /\ -oldx9^post49+oldx9^0 == 0 /\ x2^0-x2^post49 == 0 /\ oldx4^0-oldx4^post49 == 0 /\ -oldx3^post49+oldx3^0 == 0 /\ -oldx2^post49+oldx2^0 == 0 /\ -x3^post49+x3^0 == 0 /\ -x0^post49+x0^0 == 0 /\ -x1^post49+x1^0 == 0 /\ -oldx0^post49+oldx0^0 == 0 /\ -oldx1^post49+oldx1^0 == 0 /\ x4^0-x4^post49 == 0 /\ -oldx6^post49+oldx6^0 == 0), cost: 1 49: l30 -> l14 : oldx0^0'=oldx0^post50, oldx1^0'=oldx1^post50, oldx2^0'=oldx2^post50, oldx3^0'=oldx3^post50, oldx4^0'=oldx4^post50, oldx5^0'=oldx5^post50, oldx6^0'=oldx6^post50, oldx7^0'=oldx7^post50, oldx8^0'=oldx8^post50, oldx9^0'=oldx9^post50, x0^0'=x0^post50, x1^0'=x1^post50, x2^0'=x2^post50, x3^0'=x3^post50, x4^0'=x4^post50, (-oldx7^post50+oldx7^0 == 0 /\ -oldx0^post50+oldx0^0 == 0 /\ -oldx2^post50+oldx2^0 == 0 /\ -oldx8^post50+oldx8^0 == 0 /\ -x1^post50+x1^0 == 0 /\ -oldx3^post50+oldx3^0 == 0 /\ oldx9^0-oldx9^post50 == 0 /\ -oldx1^post50+oldx1^0 == 0 /\ -oldx6^post50+oldx6^0 == 0 /\ -x4^post50+x4^0 == 0 /\ -oldx5^post50+oldx5^0 == 0 /\ x3^0-x3^post50 == 0 /\ -x0^post50+x0^0 == 0 /\ x2^0-x2^post50 == 0 /\ -oldx4^post50+oldx4^0 == 0), cost: 1 50: l30 -> l16 : oldx0^0'=oldx0^post51, oldx1^0'=oldx1^post51, oldx2^0'=oldx2^post51, oldx3^0'=oldx3^post51, oldx4^0'=oldx4^post51, oldx5^0'=oldx5^post51, oldx6^0'=oldx6^post51, oldx7^0'=oldx7^post51, oldx8^0'=oldx8^post51, oldx9^0'=oldx9^post51, x0^0'=x0^post51, x1^0'=x1^post51, x2^0'=x2^post51, x3^0'=x3^post51, x4^0'=x4^post51, (-oldx0^post51+oldx0^0 == 0 /\ -oldx2^post51+oldx2^0 == 0 /\ -x1^post51+x1^0 == 0 /\ oldx7^0-oldx7^post51 == 0 /\ -x3^post51+x3^0 == 0 /\ -oldx8^post51+oldx8^0 == 0 /\ oldx4^0-oldx4^post51 == 0 /\ x2^0-x2^post51 == 0 /\ -oldx9^post51+oldx9^0 == 0 /\ -oldx3^post51+oldx3^0 == 0 /\ -oldx6^post51+oldx6^0 == 0 /\ -oldx1^post51+oldx1^0 == 0 /\ -oldx5^post51+oldx5^0 == 0 /\ -x4^post51+x4^0 == 0 /\ -x0^post51+x0^0 == 0), cost: 1 51: l30 -> l18 : oldx0^0'=oldx0^post52, oldx1^0'=oldx1^post52, oldx2^0'=oldx2^post52, oldx3^0'=oldx3^post52, oldx4^0'=oldx4^post52, oldx5^0'=oldx5^post52, oldx6^0'=oldx6^post52, oldx7^0'=oldx7^post52, oldx8^0'=oldx8^post52, oldx9^0'=oldx9^post52, x0^0'=x0^post52, x1^0'=x1^post52, x2^0'=x2^post52, x3^0'=x3^post52, x4^0'=x4^post52, (oldx9^0-oldx9^post52 == 0 /\ oldx7^0-oldx7^post52 == 0 /\ x1^0-x1^post52 == 0 /\ oldx4^0-oldx4^post52 == 0 /\ x2^0-x2^post52 == 0 /\ -x3^post52+x3^0 == 0 /\ -oldx3^post52+oldx3^0 == 0 /\ oldx1^0-oldx1^post52 == 0 /\ -oldx0^post52+oldx0^0 == 0 /\ oldx2^0-oldx2^post52 == 0 /\ oldx8^0-oldx8^post52 == 0 /\ x4^0-x4^post52 == 0 /\ -oldx6^post52+oldx6^0 == 0 /\ -x0^post52+x0^0 == 0 /\ oldx5^0-oldx5^post52 == 0), cost: 1 52: l30 -> l17 : oldx0^0'=oldx0^post53, oldx1^0'=oldx1^post53, oldx2^0'=oldx2^post53, oldx3^0'=oldx3^post53, oldx4^0'=oldx4^post53, oldx5^0'=oldx5^post53, oldx6^0'=oldx6^post53, oldx7^0'=oldx7^post53, oldx8^0'=oldx8^post53, oldx9^0'=oldx9^post53, x0^0'=x0^post53, x1^0'=x1^post53, x2^0'=x2^post53, x3^0'=x3^post53, x4^0'=x4^post53, (-oldx1^post53+oldx1^0 == 0 /\ -oldx5^post53+oldx5^0 == 0 /\ -oldx8^post53+oldx8^0 == 0 /\ -oldx2^post53+oldx2^0 == 0 /\ -x1^post53+x1^0 == 0 /\ -oldx3^post53+oldx3^0 == 0 /\ -oldx4^post53+oldx4^0 == 0 /\ oldx9^0-oldx9^post53 == 0 /\ -oldx0^post53+oldx0^0 == 0 /\ -oldx6^post53+oldx6^0 == 0 /\ x3^0-x3^post53 == 0 /\ -x0^post53+x0^0 == 0 /\ -x4^post53+x4^0 == 0 /\ -oldx7^post53+oldx7^0 == 0 /\ x2^0-x2^post53 == 0), cost: 1 53: l30 -> l21 : oldx0^0'=oldx0^post54, oldx1^0'=oldx1^post54, oldx2^0'=oldx2^post54, oldx3^0'=oldx3^post54, oldx4^0'=oldx4^post54, oldx5^0'=oldx5^post54, oldx6^0'=oldx6^post54, oldx7^0'=oldx7^post54, oldx8^0'=oldx8^post54, oldx9^0'=oldx9^post54, x0^0'=x0^post54, x1^0'=x1^post54, x2^0'=x2^post54, x3^0'=x3^post54, x4^0'=x4^post54, (-oldx7^post54+oldx7^0 == 0 /\ -x1^post54+x1^0 == 0 /\ -oldx8^post54+oldx8^0 == 0 /\ oldx9^0-oldx9^post54 == 0 /\ -oldx3^post54+oldx3^0 == 0 /\ -oldx6^post54+oldx6^0 == 0 /\ oldx1^0-oldx1^post54 == 0 /\ -oldx0^post54+oldx0^0 == 0 /\ -x0^post54+x0^0 == 0 /\ -x4^post54+x4^0 == 0 /\ -oldx5^post54+oldx5^0 == 0 /\ -oldx2^post54+oldx2^0 == 0 /\ x3^0-x3^post54 == 0 /\ -oldx4^post54+oldx4^0 == 0 /\ x2^0-x2^post54 == 0), cost: 1 54: l30 -> l19 : oldx0^0'=oldx0^post55, oldx1^0'=oldx1^post55, oldx2^0'=oldx2^post55, oldx3^0'=oldx3^post55, oldx4^0'=oldx4^post55, oldx5^0'=oldx5^post55, oldx6^0'=oldx6^post55, oldx7^0'=oldx7^post55, oldx8^0'=oldx8^post55, oldx9^0'=oldx9^post55, x0^0'=x0^post55, x1^0'=x1^post55, x2^0'=x2^post55, x3^0'=x3^post55, x4^0'=x4^post55, (-oldx3^post55+oldx3^0 == 0 /\ -x3^post55+x3^0 == 0 /\ oldx7^0-oldx7^post55 == 0 /\ -x1^post55+x1^0 == 0 /\ -oldx8^post55+oldx8^0 == 0 /\ x2^0-x2^post55 == 0 /\ oldx4^0-oldx4^post55 == 0 /\ -oldx0^post55+oldx0^0 == 0 /\ -oldx6^post55+oldx6^0 == 0 /\ oldx1^0-oldx1^post55 == 0 /\ -oldx2^post55+oldx2^0 == 0 /\ -oldx9^post55+oldx9^0 == 0 /\ -x0^post55+x0^0 == 0 /\ -x4^post55+x4^0 == 0 /\ -oldx5^post55+oldx5^0 == 0), cost: 1 55: l30 -> l20 : oldx0^0'=oldx0^post56, oldx1^0'=oldx1^post56, oldx2^0'=oldx2^post56, oldx3^0'=oldx3^post56, oldx4^0'=oldx4^post56, oldx5^0'=oldx5^post56, oldx6^0'=oldx6^post56, oldx7^0'=oldx7^post56, oldx8^0'=oldx8^post56, oldx9^0'=oldx9^post56, x0^0'=x0^post56, x1^0'=x1^post56, x2^0'=x2^post56, x3^0'=x3^post56, x4^0'=x4^post56, (oldx5^0-oldx5^post56 == 0 /\ -oldx3^post56+oldx3^0 == 0 /\ oldx9^0-oldx9^post56 == 0 /\ x1^0-x1^post56 == 0 /\ oldx1^0-oldx1^post56 == 0 /\ oldx7^0-oldx7^post56 == 0 /\ x2^0-x2^post56 == 0 /\ -x3^post56+x3^0 == 0 /\ oldx8^0-oldx8^post56 == 0 /\ -oldx0^post56+oldx0^0 == 0 /\ x4^0-x4^post56 == 0 /\ oldx4^0-oldx4^post56 == 0 /\ -oldx6^post56+oldx6^0 == 0 /\ oldx2^0-oldx2^post56 == 0 /\ -x0^post56+x0^0 == 0), cost: 1 56: l30 -> l22 : oldx0^0'=oldx0^post57, oldx1^0'=oldx1^post57, oldx2^0'=oldx2^post57, oldx3^0'=oldx3^post57, oldx4^0'=oldx4^post57, oldx5^0'=oldx5^post57, oldx6^0'=oldx6^post57, oldx7^0'=oldx7^post57, oldx8^0'=oldx8^post57, oldx9^0'=oldx9^post57, x0^0'=x0^post57, x1^0'=x1^post57, x2^0'=x2^post57, x3^0'=x3^post57, x4^0'=x4^post57, (-oldx4^post57+oldx4^0 == 0 /\ -oldx7^post57+oldx7^0 == 0 /\ -oldx1^post57+oldx1^0 == 0 /\ -oldx8^post57+oldx8^0 == 0 /\ -x1^post57+x1^0 == 0 /\ -oldx0^post57+oldx0^0 == 0 /\ oldx9^0-oldx9^post57 == 0 /\ -oldx5^post57+oldx5^0 == 0 /\ -oldx6^post57+oldx6^0 == 0 /\ -x4^post57+x4^0 == 0 /\ -oldx2^post57+oldx2^0 == 0 /\ x3^0-x3^post57 == 0 /\ x2^0-x2^post57 == 0 /\ -oldx3^post57+oldx3^0 == 0 /\ -x0^post57+x0^0 == 0), cost: 1 57: l30 -> l24 : oldx0^0'=oldx0^post58, oldx1^0'=oldx1^post58, oldx2^0'=oldx2^post58, oldx3^0'=oldx3^post58, oldx4^0'=oldx4^post58, oldx5^0'=oldx5^post58, oldx6^0'=oldx6^post58, oldx7^0'=oldx7^post58, oldx8^0'=oldx8^post58, oldx9^0'=oldx9^post58, x0^0'=x0^post58, x1^0'=x1^post58, x2^0'=x2^post58, x3^0'=x3^post58, x4^0'=x4^post58, (oldx4^0-oldx4^post58 == 0 /\ -oldx7^post58+oldx7^0 == 0 /\ -x4^post58+x4^0 == 0 /\ -oldx6^post58+oldx6^0 == 0 /\ -x1^post58+x1^0 == 0 /\ -oldx8^post58+oldx8^0 == 0 /\ oldx9^0-oldx9^post58 == 0 /\ -oldx0^post58+oldx0^0 == 0 /\ -oldx5^post58+oldx5^0 == 0 /\ oldx1^0-oldx1^post58 == 0 /\ -oldx2^post58+oldx2^0 == 0 /\ -x0^post58+x0^0 == 0 /\ -oldx3^post58+oldx3^0 == 0 /\ x3^0-x3^post58 == 0 /\ x2^0-x2^post58 == 0), cost: 1 58: l30 -> l23 : oldx0^0'=oldx0^post59, oldx1^0'=oldx1^post59, oldx2^0'=oldx2^post59, oldx3^0'=oldx3^post59, oldx4^0'=oldx4^post59, oldx5^0'=oldx5^post59, oldx6^0'=oldx6^post59, oldx7^0'=oldx7^post59, oldx8^0'=oldx8^post59, oldx9^0'=oldx9^post59, x0^0'=x0^post59, x1^0'=x1^post59, x2^0'=x2^post59, x3^0'=x3^post59, x4^0'=x4^post59, (x2^0-x2^post59 == 0 /\ -oldx3^post59+oldx3^0 == 0 /\ -oldx6^post59+oldx6^0 == 0 /\ -x3^post59+x3^0 == 0 /\ oldx4^0-oldx4^post59 == 0 /\ -oldx5^post59+oldx5^0 == 0 /\ x4^0-x4^post59 == 0 /\ -x1^post59+x1^0 == 0 /\ -oldx8^post59+oldx8^0 == 0 /\ oldx7^0-oldx7^post59 == 0 /\ -oldx9^post59+oldx9^0 == 0 /\ -oldx2^post59+oldx2^0 == 0 /\ oldx1^0-oldx1^post59 == 0 /\ -x0^post59+x0^0 == 0 /\ -oldx0^post59+oldx0^0 == 0), cost: 1 59: l30 -> l26 : oldx0^0'=oldx0^post60, oldx1^0'=oldx1^post60, oldx2^0'=oldx2^post60, oldx3^0'=oldx3^post60, oldx4^0'=oldx4^post60, oldx5^0'=oldx5^post60, oldx6^0'=oldx6^post60, oldx7^0'=oldx7^post60, oldx8^0'=oldx8^post60, oldx9^0'=oldx9^post60, x0^0'=x0^post60, x1^0'=x1^post60, x2^0'=x2^post60, x3^0'=x3^post60, x4^0'=x4^post60, (-oldx3^post60+oldx3^0 == 0 /\ oldx7^0-oldx7^post60 == 0 /\ -oldx6^post60+oldx6^0 == 0 /\ oldx9^0-oldx9^post60 == 0 /\ oldx1^0-oldx1^post60 == 0 /\ -x1^post60+x1^0 == 0 /\ oldx8^0-oldx8^post60 == 0 /\ -x3^post60+x3^0 == 0 /\ x2^0-x2^post60 == 0 /\ x4^0-x4^post60 == 0 /\ oldx4^0-oldx4^post60 == 0 /\ -x0^post60+x0^0 == 0 /\ oldx5^0-oldx5^post60 == 0 /\ oldx2^0-oldx2^post60 == 0 /\ -oldx0^post60+oldx0^0 == 0), cost: 1 60: l30 -> l25 : oldx0^0'=oldx0^post61, oldx1^0'=oldx1^post61, oldx2^0'=oldx2^post61, oldx3^0'=oldx3^post61, oldx4^0'=oldx4^post61, oldx5^0'=oldx5^post61, oldx6^0'=oldx6^post61, oldx7^0'=oldx7^post61, oldx8^0'=oldx8^post61, oldx9^0'=oldx9^post61, x0^0'=x0^post61, x1^0'=x1^post61, x2^0'=x2^post61, x3^0'=x3^post61, x4^0'=x4^post61, (-oldx9^post61+oldx9^0 == 0 /\ oldx7^0-oldx7^post61 == 0 /\ -oldx1^post61+oldx1^0 == 0 /\ -oldx6^post61+oldx6^0 == 0 /\ -x1^post61+x1^0 == 0 /\ -oldx5^post61+oldx5^0 == 0 /\ -oldx4^post61+oldx4^0 == 0 /\ -oldx0^post61+oldx0^0 == 0 /\ -x0^post61+x0^0 == 0 /\ -oldx2^post61+oldx2^0 == 0 /\ -x4^post61+x4^0 == 0 /\ -oldx8^post61+oldx8^0 == 0 /\ x3^0-x3^post61 == 0 /\ -oldx3^post61+oldx3^0 == 0 /\ x2^0-x2^post61 == 0), cost: 1 61: l30 -> l27 : oldx0^0'=oldx0^post62, oldx1^0'=oldx1^post62, oldx2^0'=oldx2^post62, oldx3^0'=oldx3^post62, oldx4^0'=oldx4^post62, oldx5^0'=oldx5^post62, oldx6^0'=oldx6^post62, oldx7^0'=oldx7^post62, oldx8^0'=oldx8^post62, oldx9^0'=oldx9^post62, x0^0'=x0^post62, x1^0'=x1^post62, x2^0'=x2^post62, x3^0'=x3^post62, x4^0'=x4^post62, (-oldx9^post62+oldx9^0 == 0 /\ -oldx3^post62+oldx3^0 == 0 /\ -x1^post62+x1^0 == 0 /\ -x4^post62+x4^0 == 0 /\ oldx4^0-oldx4^post62 == 0 /\ -oldx6^post62+oldx6^0 == 0 /\ -oldx5^post62+oldx5^0 == 0 /\ -x0^post62+x0^0 == 0 /\ x2^0-x2^post62 == 0 /\ -oldx0^post62+oldx0^0 == 0 /\ oldx7^0-oldx7^post62 == 0 /\ oldx1^0-oldx1^post62 == 0 /\ -oldx2^post62+oldx2^0 == 0 /\ -oldx8^post62+oldx8^0 == 0 /\ x3^0-x3^post62 == 0), cost: 1 62: l30 -> l29 : oldx0^0'=oldx0^post63, oldx1^0'=oldx1^post63, oldx2^0'=oldx2^post63, oldx3^0'=oldx3^post63, oldx4^0'=oldx4^post63, oldx5^0'=oldx5^post63, oldx6^0'=oldx6^post63, oldx7^0'=oldx7^post63, oldx8^0'=oldx8^post63, oldx9^0'=oldx9^post63, x0^0'=x0^post63, x1^0'=x1^post63, x2^0'=x2^post63, x3^0'=x3^post63, x4^0'=x4^post63, (x2^0-x2^post63 == 0 /\ -oldx6^post63+oldx6^0 == 0 /\ -x3^post63+x3^0 == 0 /\ oldx4^0-oldx4^post63 == 0 /\ -oldx9^post63+oldx9^0 == 0 /\ -oldx3^post63+oldx3^0 == 0 /\ -x0^post63+x0^0 == 0 /\ x4^0-x4^post63 == 0 /\ -oldx5^post63+oldx5^0 == 0 /\ oldx7^0-oldx7^post63 == 0 /\ -oldx2^post63+oldx2^0 == 0 /\ oldx1^0-oldx1^post63 == 0 /\ -oldx0^post63+oldx0^0 == 0 /\ x1^0-x1^post63 == 0 /\ -oldx8^post63+oldx8^0 == 0), cost: 1 63: l30 -> l28 : oldx0^0'=oldx0^post64, oldx1^0'=oldx1^post64, oldx2^0'=oldx2^post64, oldx3^0'=oldx3^post64, oldx4^0'=oldx4^post64, oldx5^0'=oldx5^post64, oldx6^0'=oldx6^post64, oldx7^0'=oldx7^post64, oldx8^0'=oldx8^post64, oldx9^0'=oldx9^post64, x0^0'=x0^post64, x1^0'=x1^post64, x2^0'=x2^post64, x3^0'=x3^post64, x4^0'=x4^post64, (oldx7^0-oldx7^post64 == 0 /\ -oldx6^post64+oldx6^0 == 0 /\ -oldx9^post64+oldx9^0 == 0 /\ -oldx3^post64+oldx3^0 == 0 /\ oldx1^0-oldx1^post64 == 0 /\ x2^0-x2^post64 == 0 /\ -x3^post64+x3^0 == 0 /\ -x0^post64+x0^0 == 0 /\ x1^0-x1^post64 == 0 /\ oldx8^0-oldx8^post64 == 0 /\ oldx4^0-oldx4^post64 == 0 /\ x4^0-x4^post64 == 0 /\ oldx5^0-oldx5^post64 == 0 /\ -oldx0^post64+oldx0^0 == 0 /\ oldx2^0-oldx2^post64 == 0), cost: 1 64: l30 -> l1 : oldx0^0'=oldx0^post65, oldx1^0'=oldx1^post65, oldx2^0'=oldx2^post65, oldx3^0'=oldx3^post65, oldx4^0'=oldx4^post65, oldx5^0'=oldx5^post65, oldx6^0'=oldx6^post65, oldx7^0'=oldx7^post65, oldx8^0'=oldx8^post65, oldx9^0'=oldx9^post65, x0^0'=x0^post65, x1^0'=x1^post65, x2^0'=x2^post65, x3^0'=x3^post65, x4^0'=x4^post65, (-oldx3^post65+oldx3^0 == 0 /\ oldx7^0-oldx7^post65 == 0 /\ -oldx6^post65+oldx6^0 == 0 /\ -oldx9^post65+oldx9^0 == 0 /\ -x4^post65+x4^0 == 0 /\ -x0^post65+x0^0 == 0 /\ -oldx5^post65+oldx5^0 == 0 /\ -oldx4^post65+oldx4^0 == 0 /\ x2^0-x2^post65 == 0 /\ -oldx2^post65+oldx2^0 == 0 /\ -x1^post65+x1^0 == 0 /\ -oldx1^post65+oldx1^0 == 0 /\ -oldx8^post65+oldx8^0 == 0 /\ -x3^post65+x3^0 == 0 /\ -oldx0^post65+oldx0^0 == 0), cost: 1 65: l30 -> l10 : oldx0^0'=oldx0^post66, oldx1^0'=oldx1^post66, oldx2^0'=oldx2^post66, oldx3^0'=oldx3^post66, oldx4^0'=oldx4^post66, oldx5^0'=oldx5^post66, oldx6^0'=oldx6^post66, oldx7^0'=oldx7^post66, oldx8^0'=oldx8^post66, oldx9^0'=oldx9^post66, x0^0'=x0^post66, x1^0'=x1^post66, x2^0'=x2^post66, x3^0'=x3^post66, x4^0'=x4^post66, (-oldx3^post66+oldx3^0 == 0 /\ -oldx6^post66+oldx6^0 == 0 /\ x2^0-x2^post66 == 0 /\ -oldx9^post66+oldx9^0 == 0 /\ oldx4^0-oldx4^post66 == 0 /\ -x0^post66+x0^0 == 0 /\ -oldx5^post66+oldx5^0 == 0 /\ x4^0-x4^post66 == 0 /\ oldx7^0-oldx7^post66 == 0 /\ -oldx2^post66+oldx2^0 == 0 /\ -x3^post66+x3^0 == 0 /\ oldx1^0-oldx1^post66 == 0 /\ -oldx8^post66+oldx8^0 == 0 /\ x1^0-x1^post66 == 0 /\ -oldx0^post66+oldx0^0 == 0), cost: 1 66: l31 -> l30 : oldx0^0'=oldx0^post67, oldx1^0'=oldx1^post67, oldx2^0'=oldx2^post67, oldx3^0'=oldx3^post67, oldx4^0'=oldx4^post67, oldx5^0'=oldx5^post67, oldx6^0'=oldx6^post67, oldx7^0'=oldx7^post67, oldx8^0'=oldx8^post67, oldx9^0'=oldx9^post67, x0^0'=x0^post67, x1^0'=x1^post67, x2^0'=x2^post67, x3^0'=x3^post67, x4^0'=x4^post67, (oldx9^0-oldx9^post67 == 0 /\ oldx5^0-oldx5^post67 == 0 /\ oldx7^0-oldx7^post67 == 0 /\ -x3^post67+x3^0 == 0 /\ -x1^post67+x1^0 == 0 /\ oldx4^0-oldx4^post67 == 0 /\ -oldx0^post67+oldx0^0 == 0 /\ x2^0-x2^post67 == 0 /\ oldx1^0-oldx1^post67 == 0 /\ -oldx3^post67+oldx3^0 == 0 /\ oldx8^0-oldx8^post67 == 0 /\ oldx2^0-oldx2^post67 == 0 /\ -oldx6^post67+oldx6^0 == 0 /\ x4^0-x4^post67 == 0 /\ -x0^post67+x0^0 == 0), cost: 1 Simplified Transitions Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : oldx0^0'=oldx0^post1, oldx1^0'=oldx1^post1, oldx2^0'=oldx2^post1, oldx3^0'=oldx3^post1, oldx4^0'=oldx4^post1, oldx5^0'=oldx5^post1, oldx6^0'=oldx6^post1, oldx7^0'=oldx7^post1, oldx8^0'=oldx8^post1, oldx9^0'=oldx9^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, (0 == 0 /\ -oldx6^post1+x1^post1 == 0 /\ x3^post1-oldx8^post1 == 0 /\ -x4^0+oldx4^post1 == 0 /\ -x2^0+oldx2^post1 == 0 /\ -oldx7^post1+x2^post1 == 0 /\ -oldx9^post1+x4^post1 == 0 /\ oldx1^post1-x1^0 == 0 /\ oldx3^post1-x3^0 == 0 /\ oldx0^post1-x0^0 == 0 /\ x0^post1-oldx5^post1 == 0), cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, 0 == 0, cost: 1 propagated equality oldx6^post1 = x1^post1 propagated equality oldx8^post1 = x3^post1 propagated equality oldx4^post1 = x4^0 propagated equality oldx2^post1 = x2^0 propagated equality oldx7^post1 = x2^post1 propagated equality oldx9^post1 = x4^post1 propagated equality oldx1^post1 = x1^0 propagated equality oldx3^post1 = x3^0 propagated equality oldx0^post1 = x0^0 propagated equality oldx5^post1 = x0^post1 Simplified Guard Original rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, 0 == 0, cost: 1 New rule: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 Propagated Equalities Original rule: l2 -> l1 : oldx0^0'=oldx0^post2, oldx1^0'=oldx1^post2, oldx2^0'=oldx2^post2, oldx3^0'=oldx3^post2, oldx4^0'=oldx4^post2, oldx5^0'=oldx5^post2, oldx6^0'=oldx6^post2, oldx7^0'=oldx7^post2, oldx8^0'=oldx8^post2, oldx9^0'=oldx9^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, (0 == 0 /\ x0^post2-oldx5^post2 == 0 /\ -x0^0+oldx0^post2 == 0 /\ x1^post2-oldx6^post2 == 0 /\ oldx1^post2-x1^0 == 0 /\ oldx4^post2-x4^0 == 0 /\ x3^post2-oldx8^post2 == 0 /\ x4^post2-oldx9^post2 == 0 /\ -x3^0+oldx3^post2 == 0 /\ -x2^0+oldx2^post2 == 0 /\ -oldx7^post2+x2^post2 == 0), cost: 1 New rule: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, 0 == 0, cost: 1 propagated equality oldx5^post2 = x0^post2 propagated equality oldx0^post2 = x0^0 propagated equality oldx6^post2 = x1^post2 propagated equality oldx1^post2 = x1^0 propagated equality oldx4^post2 = x4^0 propagated equality oldx8^post2 = x3^post2 propagated equality oldx9^post2 = x4^post2 propagated equality oldx3^post2 = x3^0 propagated equality oldx2^post2 = x2^0 propagated equality oldx7^post2 = x2^post2 Simplified Guard Original rule: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, 0 == 0, cost: 1 New rule: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 Propagated Equalities Original rule: l2 -> l3 : oldx0^0'=oldx0^post3, oldx1^0'=oldx1^post3, oldx2^0'=oldx2^post3, oldx3^0'=oldx3^post3, oldx4^0'=oldx4^post3, oldx5^0'=oldx5^post3, oldx6^0'=oldx6^post3, oldx7^0'=oldx7^post3, oldx8^0'=oldx8^post3, oldx9^0'=oldx9^post3, x0^0'=x0^post3, x1^0'=x1^post3, x2^0'=x2^post3, x3^0'=x3^post3, x4^0'=x4^post3, (-oldx2^post3+x2^post3 == 0 /\ oldx8^0-oldx8^post3 == 0 /\ -oldx3^post3+x3^post3 == 0 /\ oldx0^post3-x0^0 == 0 /\ oldx1^post3-x1^0 == 0 /\ oldx4^post3-x4^0 == 0 /\ -oldx4^post3+x4^post3 == 0 /\ -1+x0^post3-oldx0^post3 == 0 /\ oldx5^0-oldx5^post3 == 0 /\ -oldx1^post3+x1^post3 == 0 /\ oldx6^0-oldx6^post3 == 0 /\ oldx9^0-oldx9^post3 == 0 /\ oldx7^0-oldx7^post3 == 0 /\ -x3^0+oldx3^post3 == 0 /\ -x2^0+oldx2^post3 == 0), cost: 1 New rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx2^post3 = x2^post3 propagated equality oldx8^post3 = oldx8^0 propagated equality oldx3^post3 = x3^post3 propagated equality oldx0^post3 = x0^0 propagated equality oldx1^post3 = x1^0 propagated equality oldx4^post3 = x4^0 propagated equality x4^post3 = x4^0 propagated equality x0^post3 = 1+x0^0 propagated equality oldx5^post3 = oldx5^0 propagated equality x1^post3 = x1^0 propagated equality oldx6^post3 = oldx6^0 propagated equality oldx9^post3 = oldx9^0 propagated equality oldx7^post3 = oldx7^0 propagated equality x3^post3 = x3^0 propagated equality x2^post3 = x2^0 Simplified Guard Original rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 Propagated Equalities Original rule: l4 -> l0 : oldx0^0'=oldx0^post4, oldx1^0'=oldx1^post4, oldx2^0'=oldx2^post4, oldx3^0'=oldx3^post4, oldx4^0'=oldx4^post4, oldx5^0'=oldx5^post4, oldx6^0'=oldx6^post4, oldx7^0'=oldx7^post4, oldx8^0'=oldx8^post4, oldx9^0'=oldx9^post4, x0^0'=x0^post4, x1^0'=x1^post4, x2^0'=x2^post4, x3^0'=x3^post4, x4^0'=x4^post4, (-oldx1^post4+x1^post4 == 0 /\ -x4^0+oldx4^post4 == 0 /\ oldx7^0-oldx7^post4 == 0 /\ -oldx5^post4+oldx5^0 == 0 /\ oldx1^post4-x1^0 == 0 /\ -oldx8^post4+oldx8^0 == 0 /\ -x2^0+oldx2^post4 == 0 /\ 1+oldx1^post4-oldx0^post4 <= 0 /\ oldx3^post4-x3^0 == 0 /\ -oldx9^post4+oldx9^0 == 0 /\ x4^post4-oldx4^post4 == 0 /\ -oldx2^post4+x2^post4 == 0 /\ -oldx3^post4+x3^post4 == 0 /\ -oldx6^post4+oldx6^0 == 0 /\ -oldx0^post4+x0^post4 == 0 /\ oldx0^post4-x0^0 == 0), cost: 1 New rule: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, (0 == 0 /\ 1+x1^0-x0^0 <= 0), cost: 1 propagated equality oldx1^post4 = x1^post4 propagated equality oldx4^post4 = x4^0 propagated equality oldx7^post4 = oldx7^0 propagated equality oldx5^post4 = oldx5^0 propagated equality x1^post4 = x1^0 propagated equality oldx8^post4 = oldx8^0 propagated equality oldx2^post4 = x2^0 propagated equality oldx3^post4 = x3^0 propagated equality oldx9^post4 = oldx9^0 propagated equality x4^post4 = x4^0 propagated equality x2^post4 = x2^0 propagated equality x3^post4 = x3^0 propagated equality oldx6^post4 = oldx6^0 propagated equality oldx0^post4 = x0^post4 propagated equality x0^post4 = x0^0 Simplified Guard Original rule: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, (0 == 0 /\ 1+x1^0-x0^0 <= 0), cost: 1 New rule: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 New rule: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l4 -> l2 : oldx0^0'=oldx0^post5, oldx1^0'=oldx1^post5, oldx2^0'=oldx2^post5, oldx3^0'=oldx3^post5, oldx4^0'=oldx4^post5, oldx5^0'=oldx5^post5, oldx6^0'=oldx6^post5, oldx7^0'=oldx7^post5, oldx8^0'=oldx8^post5, oldx9^0'=oldx9^post5, x0^0'=x0^post5, x1^0'=x1^post5, x2^0'=x2^post5, x3^0'=x3^post5, x4^0'=x4^post5, (-oldx3^post5+x3^post5 == 0 /\ -x1^0+oldx1^post5 == 0 /\ -x4^0+oldx4^post5 == 0 /\ oldx7^0-oldx7^post5 == 0 /\ -x2^0+oldx2^post5 == 0 /\ oldx0^post5-oldx1^post5 <= 0 /\ oldx3^post5-x3^0 == 0 /\ -oldx9^post5+oldx9^0 == 0 /\ x0^post5-oldx0^post5 == 0 /\ -oldx2^post5+x2^post5 == 0 /\ oldx8^0-oldx8^post5 == 0 /\ x1^post5-oldx1^post5 == 0 /\ -oldx6^post5+oldx6^0 == 0 /\ -oldx4^post5+x4^post5 == 0 /\ oldx0^post5-x0^0 == 0 /\ oldx5^0-oldx5^post5 == 0), cost: 1 New rule: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, (0 == 0 /\ -x1^0+x0^0 <= 0), cost: 1 propagated equality oldx3^post5 = x3^post5 propagated equality oldx1^post5 = x1^0 propagated equality oldx4^post5 = x4^0 propagated equality oldx7^post5 = oldx7^0 propagated equality oldx2^post5 = x2^0 propagated equality x3^post5 = x3^0 propagated equality oldx9^post5 = oldx9^0 propagated equality oldx0^post5 = x0^post5 propagated equality x2^post5 = x2^0 propagated equality oldx8^post5 = oldx8^0 propagated equality x1^post5 = x1^0 propagated equality oldx6^post5 = oldx6^0 propagated equality x4^post5 = x4^0 propagated equality x0^post5 = x0^0 propagated equality oldx5^post5 = oldx5^0 Simplified Guard Original rule: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, (0 == 0 /\ -x1^0+x0^0 <= 0), cost: 1 New rule: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 New rule: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l3 -> l4 : oldx0^0'=oldx0^post6, oldx1^0'=oldx1^post6, oldx2^0'=oldx2^post6, oldx3^0'=oldx3^post6, oldx4^0'=oldx4^post6, oldx5^0'=oldx5^post6, oldx6^0'=oldx6^post6, oldx7^0'=oldx7^post6, oldx8^0'=oldx8^post6, oldx9^0'=oldx9^post6, x0^0'=x0^post6, x1^0'=x1^post6, x2^0'=x2^post6, x3^0'=x3^post6, x4^0'=x4^post6, (-x2^0+oldx2^post6 == 0 /\ oldx8^0-oldx8^post6 == 0 /\ -oldx4^post6+x4^post6 == 0 /\ -oldx1^post6+x1^post6 == 0 /\ oldx4^post6-x4^0 == 0 /\ oldx5^0-oldx5^post6 == 0 /\ oldx9^0-oldx9^post6 == 0 /\ oldx6^0-oldx6^post6 == 0 /\ x0^post6-oldx0^post6 == 0 /\ -x3^0+oldx3^post6 == 0 /\ oldx7^0-oldx7^post6 == 0 /\ -oldx2^post6+x2^post6 == 0 /\ x3^post6-oldx3^post6 == 0 /\ oldx0^post6-x0^0 == 0 /\ oldx1^post6-x1^0 == 0), cost: 1 New rule: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx2^post6 = x2^0 propagated equality oldx8^post6 = oldx8^0 propagated equality oldx4^post6 = x4^post6 propagated equality oldx1^post6 = x1^post6 propagated equality x4^post6 = x4^0 propagated equality oldx5^post6 = oldx5^0 propagated equality oldx9^post6 = oldx9^0 propagated equality oldx6^post6 = oldx6^0 propagated equality oldx0^post6 = x0^post6 propagated equality oldx3^post6 = x3^0 propagated equality oldx7^post6 = oldx7^0 propagated equality x2^post6 = x2^0 propagated equality x3^post6 = x3^0 propagated equality x0^post6 = x0^0 propagated equality x1^post6 = x1^0 Simplified Guard Original rule: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 Propagated Equalities Original rule: l5 -> l6 : oldx0^0'=oldx0^post7, oldx1^0'=oldx1^post7, oldx2^0'=oldx2^post7, oldx3^0'=oldx3^post7, oldx4^0'=oldx4^post7, oldx5^0'=oldx5^post7, oldx6^0'=oldx6^post7, oldx7^0'=oldx7^post7, oldx8^0'=oldx8^post7, oldx9^0'=oldx9^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, (0 == 0 /\ x4^post7-oldx9^post7 == 0 /\ -oldx7^post7+x2^post7 == 0 /\ oldx4^post7-x4^0 == 0 /\ -oldx8^post7+x3^post7 == 0 /\ -x2^0+oldx2^post7 == 0 /\ x1^post7-oldx6^post7 == 0 /\ -x1^0+oldx1^post7 == 0 /\ x0^post7-oldx5^post7 == 0 /\ oldx0^post7-x0^0 == 0 /\ oldx3^post7-x3^0 == 0), cost: 1 New rule: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, 0 == 0, cost: 1 propagated equality oldx9^post7 = x4^post7 propagated equality oldx7^post7 = x2^post7 propagated equality oldx4^post7 = x4^0 propagated equality oldx8^post7 = x3^post7 propagated equality oldx2^post7 = x2^0 propagated equality oldx6^post7 = x1^post7 propagated equality oldx1^post7 = x1^0 propagated equality oldx5^post7 = x0^post7 propagated equality oldx0^post7 = x0^0 propagated equality oldx3^post7 = x3^0 Simplified Guard Original rule: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, 0 == 0, cost: 1 New rule: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 Propagated Equalities Original rule: l7 -> l8 : oldx0^0'=oldx0^post8, oldx1^0'=oldx1^post8, oldx2^0'=oldx2^post8, oldx3^0'=oldx3^post8, oldx4^0'=oldx4^post8, oldx5^0'=oldx5^post8, oldx6^0'=oldx6^post8, oldx7^0'=oldx7^post8, oldx8^0'=oldx8^post8, oldx9^0'=oldx9^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, (0 == 0 /\ x1^post8-oldx6^post8 == 0 /\ -oldx5^post8+x0^post8 == 0 /\ -x4^0+oldx4^post8 == 0 /\ x2^post8-oldx7^post8 == 0 /\ x4^post8-oldx9^post8 == 0 /\ -x1^0+oldx1^post8 == 0 /\ oldx0^post8-x0^0 == 0 /\ oldx2^post8-x2^0 == 0 /\ oldx3^post8-x3^0 == 0 /\ -oldx8^post8+x3^post8 == 0), cost: 1 New rule: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, 0 == 0, cost: 1 propagated equality oldx6^post8 = x1^post8 propagated equality oldx5^post8 = x0^post8 propagated equality oldx4^post8 = x4^0 propagated equality oldx7^post8 = x2^post8 propagated equality oldx9^post8 = x4^post8 propagated equality oldx1^post8 = x1^0 propagated equality oldx0^post8 = x0^0 propagated equality oldx2^post8 = x2^0 propagated equality oldx3^post8 = x3^0 propagated equality oldx8^post8 = x3^post8 Simplified Guard Original rule: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, 0 == 0, cost: 1 New rule: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 Propagated Equalities Original rule: l9 -> l6 : oldx0^0'=oldx0^post9, oldx1^0'=oldx1^post9, oldx2^0'=oldx2^post9, oldx3^0'=oldx3^post9, oldx4^0'=oldx4^post9, oldx5^0'=oldx5^post9, oldx6^0'=oldx6^post9, oldx7^0'=oldx7^post9, oldx8^0'=oldx8^post9, oldx9^0'=oldx9^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, (0 == 0 /\ -x1^0+oldx1^post9 == 0 /\ -x2^0+oldx2^post9 == 0 /\ -oldx9^post9+x4^post9 == 0 /\ -oldx6^post9+x1^post9 == 0 /\ -oldx7^post9+x2^post9 == 0 /\ oldx3^post9-x3^0 == 0 /\ oldx0^post9-x0^0 == 0 /\ -x4^0+oldx4^post9 == 0 /\ x0^post9-oldx5^post9 == 0 /\ x3^post9-oldx8^post9 == 0), cost: 1 New rule: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, 0 == 0, cost: 1 propagated equality oldx1^post9 = x1^0 propagated equality oldx2^post9 = x2^0 propagated equality oldx9^post9 = x4^post9 propagated equality oldx6^post9 = x1^post9 propagated equality oldx7^post9 = x2^post9 propagated equality oldx3^post9 = x3^0 propagated equality oldx0^post9 = x0^0 propagated equality oldx4^post9 = x4^0 propagated equality oldx5^post9 = x0^post9 propagated equality oldx8^post9 = x3^post9 Simplified Guard Original rule: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, 0 == 0, cost: 1 New rule: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 Propagated Equalities Original rule: l9 -> l10 : oldx0^0'=oldx0^post10, oldx1^0'=oldx1^post10, oldx2^0'=oldx2^post10, oldx3^0'=oldx3^post10, oldx4^0'=oldx4^post10, oldx5^0'=oldx5^post10, oldx6^0'=oldx6^post10, oldx7^0'=oldx7^post10, oldx8^0'=oldx8^post10, oldx9^0'=oldx9^post10, x0^0'=x0^post10, x1^0'=x1^post10, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, (0 == 0 /\ -oldx6^post10+x3^post10 == 0 /\ -x2^0+oldx2^post10 == 0 /\ -oldx1^post10+x1^post10 == 0 /\ -oldx7^post10+x4^post10 == 0 /\ oldx8^0-oldx8^post10 == 0 /\ oldx9^0-oldx9^post10 == 0 /\ oldx0^post10-x0^0 == 0 /\ -oldx5^post10+x2^post10 == 0 /\ oldx4^post10-x4^0 == 0 /\ oldx3^post10-x3^0 == 0 /\ 1+x0^post10-oldx0^post10 == 0 /\ oldx1^post10-x1^0 == 0), cost: 1 New rule: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=-1+x0^0, x1^0'=x1^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, 0 == 0, cost: 1 propagated equality oldx6^post10 = x3^post10 propagated equality oldx2^post10 = x2^0 propagated equality oldx1^post10 = x1^post10 propagated equality oldx7^post10 = x4^post10 propagated equality oldx8^post10 = oldx8^0 propagated equality oldx9^post10 = oldx9^0 propagated equality oldx0^post10 = x0^0 propagated equality oldx5^post10 = x2^post10 propagated equality oldx4^post10 = x4^0 propagated equality oldx3^post10 = x3^0 propagated equality x0^post10 = -1+x0^0 propagated equality x1^post10 = x1^0 Simplified Guard Original rule: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=-1+x0^0, x1^0'=x1^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, 0 == 0, cost: 1 New rule: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=-1+x0^0, x1^0'=x1^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 Removed Trivial Updates Original rule: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=-1+x0^0, x1^0'=x1^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 New rule: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 Propagated Equalities Original rule: l11 -> l12 : oldx0^0'=oldx0^post11, oldx1^0'=oldx1^post11, oldx2^0'=oldx2^post11, oldx3^0'=oldx3^post11, oldx4^0'=oldx4^post11, oldx5^0'=oldx5^post11, oldx6^0'=oldx6^post11, oldx7^0'=oldx7^post11, oldx8^0'=oldx8^post11, oldx9^0'=oldx9^post11, x0^0'=x0^post11, x1^0'=x1^post11, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (0 == 0 /\ -oldx6^post11+x3^post11 == 0 /\ -1+x1^post11-oldx1^post11 == 0 /\ -x4^0+oldx4^post11 == 0 /\ x0^post11-oldx0^post11 == 0 /\ -oldx8^post11+oldx8^0 == 0 /\ -x2^0+oldx2^post11 == 0 /\ -x1^0+oldx1^post11 == 0 /\ oldx9^0-oldx9^post11 == 0 /\ oldx3^post11-x3^0 == 0 /\ -oldx5^post11+x2^post11 == 0 /\ oldx0^post11-x0^0 == 0 /\ x4^post11-oldx7^post11 == 0), cost: 1 New rule: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, 0 == 0, cost: 1 propagated equality oldx6^post11 = x3^post11 propagated equality oldx1^post11 = -1+x1^post11 propagated equality oldx4^post11 = x4^0 propagated equality oldx0^post11 = x0^post11 propagated equality oldx8^post11 = oldx8^0 propagated equality oldx2^post11 = x2^0 propagated equality x1^post11 = 1+x1^0 propagated equality oldx9^post11 = oldx9^0 propagated equality oldx3^post11 = x3^0 propagated equality oldx5^post11 = x2^post11 propagated equality x0^post11 = x0^0 propagated equality oldx7^post11 = x4^post11 Simplified Guard Original rule: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, 0 == 0, cost: 1 New rule: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 Removed Trivial Updates Original rule: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 New rule: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 Propagated Equalities Original rule: l12 -> l7 : oldx0^0'=oldx0^post12, oldx1^0'=oldx1^post12, oldx2^0'=oldx2^post12, oldx3^0'=oldx3^post12, oldx4^0'=oldx4^post12, oldx5^0'=oldx5^post12, oldx6^0'=oldx6^post12, oldx7^0'=oldx7^post12, oldx8^0'=oldx8^post12, oldx9^0'=oldx9^post12, x0^0'=x0^post12, x1^0'=x1^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, (0 == 0 /\ x4^post12-oldx7^post12 == 0 /\ -x4^0+oldx4^post12 == 0 /\ -oldx9^post12+oldx9^0 == 0 /\ -x1^0+oldx1^post12 == 0 /\ -oldx5^post12+x2^post12 == 0 /\ -oldx8^post12+oldx8^0 == 0 /\ oldx3^post12-x3^0 == 0 /\ oldx2^post12-x2^0 == 0 /\ oldx0^post12-x0^0 == 0 /\ -oldx0^post12+x0^post12 == 0 /\ oldx0^post12-oldx1^post12 <= 0 /\ -oldx6^post12+x3^post12 == 0 /\ x1^post12-oldx1^post12 == 0), cost: 1 New rule: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, (0 == 0 /\ -x1^0+x0^0 <= 0), cost: 1 propagated equality oldx7^post12 = x4^post12 propagated equality oldx4^post12 = x4^0 propagated equality oldx9^post12 = oldx9^0 propagated equality oldx1^post12 = x1^0 propagated equality oldx5^post12 = x2^post12 propagated equality oldx8^post12 = oldx8^0 propagated equality oldx3^post12 = x3^0 propagated equality oldx2^post12 = x2^0 propagated equality oldx0^post12 = x0^0 propagated equality x0^post12 = x0^0 propagated equality oldx6^post12 = x3^post12 propagated equality x1^post12 = x1^0 Simplified Guard Original rule: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, (0 == 0 /\ -x1^0+x0^0 <= 0), cost: 1 New rule: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 New rule: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l12 -> l11 : oldx0^0'=oldx0^post13, oldx1^0'=oldx1^post13, oldx2^0'=oldx2^post13, oldx3^0'=oldx3^post13, oldx4^0'=oldx4^post13, oldx5^0'=oldx5^post13, oldx6^0'=oldx6^post13, oldx7^0'=oldx7^post13, oldx8^0'=oldx8^post13, oldx9^0'=oldx9^post13, x0^0'=x0^post13, x1^0'=x1^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (0 == 0 /\ -x1^0+oldx1^post13 == 0 /\ -oldx9^post13+oldx9^0 == 0 /\ -x2^0+oldx2^post13 == 0 /\ 1-oldx0^post13+oldx1^post13 <= 0 /\ oldx8^0-oldx8^post13 == 0 /\ x1^post13-oldx1^post13 == 0 /\ -oldx5^post13+x2^post13 == 0 /\ -oldx7^post13+x4^post13 == 0 /\ oldx3^post13-x3^0 == 0 /\ oldx0^post13-x0^0 == 0 /\ -oldx6^post13+x3^post13 == 0 /\ -x4^0+oldx4^post13 == 0 /\ x0^post13-oldx0^post13 == 0), cost: 1 New rule: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (0 == 0 /\ 1+x1^0-x0^0 <= 0), cost: 1 propagated equality oldx1^post13 = x1^0 propagated equality oldx9^post13 = oldx9^0 propagated equality oldx2^post13 = x2^0 propagated equality oldx8^post13 = oldx8^0 propagated equality x1^post13 = x1^0 propagated equality oldx5^post13 = x2^post13 propagated equality oldx7^post13 = x4^post13 propagated equality oldx3^post13 = x3^0 propagated equality oldx0^post13 = x0^0 propagated equality oldx6^post13 = x3^post13 propagated equality oldx4^post13 = x4^0 propagated equality x0^post13 = x0^0 Simplified Guard Original rule: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (0 == 0 /\ 1+x1^0-x0^0 <= 0), cost: 1 New rule: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 New rule: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l13 -> l12 : oldx0^0'=oldx0^post14, oldx1^0'=oldx1^post14, oldx2^0'=oldx2^post14, oldx3^0'=oldx3^post14, oldx4^0'=oldx4^post14, oldx5^0'=oldx5^post14, oldx6^0'=oldx6^post14, oldx7^0'=oldx7^post14, oldx8^0'=oldx8^post14, oldx9^0'=oldx9^post14, x0^0'=x0^post14, x1^0'=x1^post14, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, (0 == 0 /\ -x2^0+oldx2^post14 == 0 /\ -oldx6^post14+x3^post14 == 0 /\ x1^post14 == 0 /\ -oldx0^post14+x0^post14 == 0 /\ -oldx7^post14+x4^post14 == 0 /\ -oldx8^post14+oldx8^0 == 0 /\ oldx1^post14-x1^0 == 0 /\ oldx3^post14-x3^0 == 0 /\ oldx4^post14-x4^0 == 0 /\ -oldx9^post14+oldx9^0 == 0 /\ -oldx5^post14+x2^post14 == 0 /\ oldx0^post14-x0^0 == 0), cost: 1 New rule: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, 0 == 0, cost: 1 propagated equality oldx2^post14 = x2^0 propagated equality oldx6^post14 = x3^post14 propagated equality x1^post14 = 0 propagated equality oldx0^post14 = x0^post14 propagated equality oldx7^post14 = x4^post14 propagated equality oldx8^post14 = oldx8^0 propagated equality oldx1^post14 = x1^0 propagated equality oldx3^post14 = x3^0 propagated equality oldx4^post14 = x4^0 propagated equality oldx9^post14 = oldx9^0 propagated equality oldx5^post14 = x2^post14 propagated equality x0^post14 = x0^0 Simplified Guard Original rule: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, 0 == 0, cost: 1 New rule: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 Removed Trivial Updates Original rule: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 New rule: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 Propagated Equalities Original rule: l14 -> l15 : oldx0^0'=oldx0^post15, oldx1^0'=oldx1^post15, oldx2^0'=oldx2^post15, oldx3^0'=oldx3^post15, oldx4^0'=oldx4^post15, oldx5^0'=oldx5^post15, oldx6^0'=oldx6^post15, oldx7^0'=oldx7^post15, oldx8^0'=oldx8^post15, oldx9^0'=oldx9^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, (0 == 0 /\ -oldx6^post15+x1^post15 == 0 /\ -oldx8^post15+x3^post15 == 0 /\ -x4^0+oldx4^post15 == 0 /\ -x1^0+oldx1^post15 == 0 /\ -oldx7^post15+x2^post15 == 0 /\ -oldx9^post15+x4^post15 == 0 /\ oldx0^post15-x0^0 == 0 /\ oldx2^post15-x2^0 == 0 /\ oldx3^post15-x3^0 == 0 /\ -oldx5^post15+x0^post15 == 0), cost: 1 New rule: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, 0 == 0, cost: 1 propagated equality oldx6^post15 = x1^post15 propagated equality oldx8^post15 = x3^post15 propagated equality oldx4^post15 = x4^0 propagated equality oldx1^post15 = x1^0 propagated equality oldx7^post15 = x2^post15 propagated equality oldx9^post15 = x4^post15 propagated equality oldx0^post15 = x0^0 propagated equality oldx2^post15 = x2^0 propagated equality oldx3^post15 = x3^0 propagated equality oldx5^post15 = x0^post15 Simplified Guard Original rule: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, 0 == 0, cost: 1 New rule: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 Propagated Equalities Original rule: l16 -> l15 : oldx0^0'=oldx0^post16, oldx1^0'=oldx1^post16, oldx2^0'=oldx2^post16, oldx3^0'=oldx3^post16, oldx4^0'=oldx4^post16, oldx5^0'=oldx5^post16, oldx6^0'=oldx6^post16, oldx7^0'=oldx7^post16, oldx8^0'=oldx8^post16, oldx9^0'=oldx9^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, (0 == 0 /\ oldx1^post16-x1^0 == 0 /\ oldx3^post16-x3^0 == 0 /\ -x2^0+oldx2^post16 == 0 /\ x2^post16-oldx7^post16 == 0 /\ oldx0^post16-x0^0 == 0 /\ oldx4^post16-x4^0 == 0 /\ x1^post16-oldx6^post16 == 0 /\ x4^post16-oldx9^post16 == 0 /\ -oldx5^post16+x0^post16 == 0 /\ -oldx8^post16+x3^post16 == 0), cost: 1 New rule: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, 0 == 0, cost: 1 propagated equality oldx1^post16 = x1^0 propagated equality oldx3^post16 = x3^0 propagated equality oldx2^post16 = x2^0 propagated equality oldx7^post16 = x2^post16 propagated equality oldx0^post16 = x0^0 propagated equality oldx4^post16 = x4^0 propagated equality oldx6^post16 = x1^post16 propagated equality oldx9^post16 = x4^post16 propagated equality oldx5^post16 = x0^post16 propagated equality oldx8^post16 = x3^post16 Simplified Guard Original rule: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, 0 == 0, cost: 1 New rule: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 Propagated Equalities Original rule: l16 -> l17 : oldx0^0'=oldx0^post17, oldx1^0'=oldx1^post17, oldx2^0'=oldx2^post17, oldx3^0'=oldx3^post17, oldx4^0'=oldx4^post17, oldx5^0'=oldx5^post17, oldx6^0'=oldx6^post17, oldx7^0'=oldx7^post17, oldx8^0'=oldx8^post17, oldx9^0'=oldx9^post17, x0^0'=x0^post17, x1^0'=x1^post17, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (0 == 0 /\ -oldx5^post17+x2^post17 == 0 /\ oldx3^post17-x3^0 == 0 /\ oldx8^0-oldx8^post17 == 0 /\ -oldx9^post17+oldx9^0 == 0 /\ -x4^0+oldx4^post17 == 0 /\ oldx0^post17-x0^0 == 0 /\ oldx2^post17-x2^0 == 0 /\ -oldx7^post17+x4^post17 == 0 /\ -oldx1^post17+x1^post17 == 0 /\ -oldx6^post17+x3^post17 == 0 /\ -1-oldx0^post17+x0^post17 == 0 /\ -x1^0+oldx1^post17 == 0), cost: 1 New rule: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, 0 == 0, cost: 1 propagated equality oldx5^post17 = x2^post17 propagated equality oldx3^post17 = x3^0 propagated equality oldx8^post17 = oldx8^0 propagated equality oldx9^post17 = oldx9^0 propagated equality oldx4^post17 = x4^0 propagated equality oldx0^post17 = x0^0 propagated equality oldx2^post17 = x2^0 propagated equality oldx7^post17 = x4^post17 propagated equality oldx1^post17 = x1^post17 propagated equality oldx6^post17 = x3^post17 propagated equality x0^post17 = 1+x0^0 propagated equality x1^post17 = x1^0 Simplified Guard Original rule: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, 0 == 0, cost: 1 New rule: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 Removed Trivial Updates Original rule: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 New rule: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 Propagated Equalities Original rule: l18 -> l14 : oldx0^0'=oldx0^post18, oldx1^0'=oldx1^post18, oldx2^0'=oldx2^post18, oldx3^0'=oldx3^post18, oldx4^0'=oldx4^post18, oldx5^0'=oldx5^post18, oldx6^0'=oldx6^post18, oldx7^0'=oldx7^post18, oldx8^0'=oldx8^post18, oldx9^0'=oldx9^post18, x0^0'=x0^post18, x1^0'=x1^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, (0 == 0 /\ oldx1^post18-x1^0 == 0 /\ -oldx7^post18+x4^post18 == 0 /\ oldx9^0-oldx9^post18 == 0 /\ -oldx0^post18+x0^post18 == 0 /\ -x3^0+oldx3^post18 == 0 /\ oldx0^post18-x0^0 == 0 /\ oldx4^post18-x4^0 == 0 /\ -x2^0+oldx2^post18 == 0 /\ -oldx1^post18+x1^post18 == 0 /\ 1-oldx0^post18+oldx1^post18 <= 0 /\ -oldx5^post18+x2^post18 == 0 /\ oldx8^0-oldx8^post18 == 0 /\ x3^post18-oldx6^post18 == 0), cost: 1 New rule: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, (0 == 0 /\ 1+x1^0-x0^0 <= 0), cost: 1 propagated equality oldx1^post18 = x1^0 propagated equality oldx7^post18 = x4^post18 propagated equality oldx9^post18 = oldx9^0 propagated equality oldx0^post18 = x0^post18 propagated equality oldx3^post18 = x3^0 propagated equality x0^post18 = x0^0 propagated equality oldx4^post18 = x4^0 propagated equality oldx2^post18 = x2^0 propagated equality x1^post18 = x1^0 propagated equality oldx5^post18 = x2^post18 propagated equality oldx8^post18 = oldx8^0 propagated equality oldx6^post18 = x3^post18 Simplified Guard Original rule: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, (0 == 0 /\ 1+x1^0-x0^0 <= 0), cost: 1 New rule: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 New rule: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l18 -> l16 : oldx0^0'=oldx0^post19, oldx1^0'=oldx1^post19, oldx2^0'=oldx2^post19, oldx3^0'=oldx3^post19, oldx4^0'=oldx4^post19, oldx5^0'=oldx5^post19, oldx6^0'=oldx6^post19, oldx7^0'=oldx7^post19, oldx8^0'=oldx8^post19, oldx9^0'=oldx9^post19, x0^0'=x0^post19, x1^0'=x1^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (0 == 0 /\ -oldx6^post19+x3^post19 == 0 /\ oldx3^post19-x3^0 == 0 /\ -oldx1^post19+x1^post19 == 0 /\ -x2^0+oldx2^post19 == 0 /\ -oldx9^post19+oldx9^0 == 0 /\ oldx1^post19-x1^0 == 0 /\ -oldx5^post19+x2^post19 == 0 /\ oldx4^post19-x4^0 == 0 /\ oldx0^post19-x0^0 == 0 /\ -oldx0^post19+x0^post19 == 0 /\ -oldx1^post19+oldx0^post19 <= 0 /\ -oldx8^post19+oldx8^0 == 0 /\ x4^post19-oldx7^post19 == 0), cost: 1 New rule: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (0 == 0 /\ -x1^0+x0^0 <= 0), cost: 1 propagated equality oldx6^post19 = x3^post19 propagated equality oldx3^post19 = x3^0 propagated equality oldx1^post19 = x1^post19 propagated equality oldx2^post19 = x2^0 propagated equality oldx9^post19 = oldx9^0 propagated equality x1^post19 = x1^0 propagated equality oldx5^post19 = x2^post19 propagated equality oldx4^post19 = x4^0 propagated equality oldx0^post19 = x0^0 propagated equality x0^post19 = x0^0 propagated equality oldx8^post19 = oldx8^0 propagated equality oldx7^post19 = x4^post19 Simplified Guard Original rule: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (0 == 0 /\ -x1^0+x0^0 <= 0), cost: 1 New rule: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 New rule: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l17 -> l18 : oldx0^0'=oldx0^post20, oldx1^0'=oldx1^post20, oldx2^0'=oldx2^post20, oldx3^0'=oldx3^post20, oldx4^0'=oldx4^post20, oldx5^0'=oldx5^post20, oldx6^0'=oldx6^post20, oldx7^0'=oldx7^post20, oldx8^0'=oldx8^post20, oldx9^0'=oldx9^post20, x0^0'=x0^post20, x1^0'=x1^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (0 == 0 /\ oldx3^post20-x3^0 == 0 /\ -oldx8^post20+oldx8^0 == 0 /\ oldx1^post20-x1^0 == 0 /\ -oldx0^post20+x0^post20 == 0 /\ oldx0^post20-x0^0 == 0 /\ -oldx1^post20+x1^post20 == 0 /\ -x2^0+oldx2^post20 == 0 /\ -oldx9^post20+oldx9^0 == 0 /\ oldx4^post20-x4^0 == 0 /\ -oldx6^post20+x3^post20 == 0 /\ x4^post20-oldx7^post20 == 0 /\ -oldx5^post20+x2^post20 == 0), cost: 1 New rule: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, 0 == 0, cost: 1 propagated equality oldx3^post20 = x3^0 propagated equality oldx8^post20 = oldx8^0 propagated equality oldx1^post20 = x1^0 propagated equality oldx0^post20 = x0^post20 propagated equality x0^post20 = x0^0 propagated equality x1^post20 = x1^0 propagated equality oldx2^post20 = x2^0 propagated equality oldx9^post20 = oldx9^0 propagated equality oldx4^post20 = x4^0 propagated equality oldx6^post20 = x3^post20 propagated equality oldx7^post20 = x4^post20 propagated equality oldx5^post20 = x2^post20 Simplified Guard Original rule: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, 0 == 0, cost: 1 New rule: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 Removed Trivial Updates Original rule: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 New rule: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 Propagated Equalities Original rule: l19 -> l5 : oldx0^0'=oldx0^post21, oldx1^0'=oldx1^post21, oldx2^0'=oldx2^post21, oldx3^0'=oldx3^post21, oldx4^0'=oldx4^post21, oldx5^0'=oldx5^post21, oldx6^0'=oldx6^post21, oldx7^0'=oldx7^post21, oldx8^0'=oldx8^post21, oldx9^0'=oldx9^post21, x0^0'=x0^post21, x1^0'=x1^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, (0 == 0 /\ oldx0^post21-x0^0 == 0 /\ oldx3^post21-x3^0 == 0 /\ oldx8^0-oldx8^post21 == 0 /\ -oldx1^post21+x1^post21 == 0 /\ -x1^0+oldx1^post21 == 0 /\ -oldx7^post21+x4^post21 == 0 /\ -oldx9^post21+oldx9^0 == 0 /\ -oldx6^post21+x3^post21 == 0 /\ -oldx5^post21+x2^post21 == 0 /\ 1+oldx0^post21-oldx1^post21 <= 0 /\ -oldx0^post21+x0^post21 == 0 /\ oldx2^post21-x2^0 == 0 /\ -x4^0+oldx4^post21 == 0), cost: 1 New rule: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, (0 == 0 /\ 1-x1^0+x0^0 <= 0), cost: 1 propagated equality oldx0^post21 = x0^0 propagated equality oldx3^post21 = x3^0 propagated equality oldx8^post21 = oldx8^0 propagated equality oldx1^post21 = x1^post21 propagated equality x1^post21 = x1^0 propagated equality oldx7^post21 = x4^post21 propagated equality oldx9^post21 = oldx9^0 propagated equality oldx6^post21 = x3^post21 propagated equality oldx5^post21 = x2^post21 propagated equality x0^post21 = x0^0 propagated equality oldx2^post21 = x2^0 propagated equality oldx4^post21 = x4^0 Simplified Guard Original rule: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, (0 == 0 /\ 1-x1^0+x0^0 <= 0), cost: 1 New rule: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 New rule: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l19 -> l9 : oldx0^0'=oldx0^post22, oldx1^0'=oldx1^post22, oldx2^0'=oldx2^post22, oldx3^0'=oldx3^post22, oldx4^0'=oldx4^post22, oldx5^0'=oldx5^post22, oldx6^0'=oldx6^post22, oldx7^0'=oldx7^post22, oldx8^0'=oldx8^post22, oldx9^0'=oldx9^post22, x0^0'=x0^post22, x1^0'=x1^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (0 == 0 /\ oldx0^post22-x0^0 == 0 /\ -oldx5^post22+x2^post22 == 0 /\ x1^post22-oldx1^post22 == 0 /\ oldx9^0-oldx9^post22 == 0 /\ -oldx7^post22+x4^post22 == 0 /\ -oldx0^post22+oldx1^post22 <= 0 /\ -x2^0+oldx2^post22 == 0 /\ oldx1^post22-x1^0 == 0 /\ oldx4^post22-x4^0 == 0 /\ x3^post22-oldx6^post22 == 0 /\ -x3^0+oldx3^post22 == 0 /\ x0^post22-oldx0^post22 == 0 /\ oldx8^0-oldx8^post22 == 0), cost: 1 New rule: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (0 == 0 /\ x1^0-x0^0 <= 0), cost: 1 propagated equality oldx0^post22 = x0^0 propagated equality oldx5^post22 = x2^post22 propagated equality oldx1^post22 = x1^post22 propagated equality oldx9^post22 = oldx9^0 propagated equality oldx7^post22 = x4^post22 propagated equality oldx2^post22 = x2^0 propagated equality x1^post22 = x1^0 propagated equality oldx4^post22 = x4^0 propagated equality oldx6^post22 = x3^post22 propagated equality oldx3^post22 = x3^0 propagated equality x0^post22 = x0^0 propagated equality oldx8^post22 = oldx8^0 Simplified Guard Original rule: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (0 == 0 /\ x1^0-x0^0 <= 0), cost: 1 New rule: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 New rule: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l20 -> l21 : oldx0^0'=oldx0^post23, oldx1^0'=oldx1^post23, oldx2^0'=oldx2^post23, oldx3^0'=oldx3^post23, oldx4^0'=oldx4^post23, oldx5^0'=oldx5^post23, oldx6^0'=oldx6^post23, oldx7^0'=oldx7^post23, oldx8^0'=oldx8^post23, oldx9^0'=oldx9^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, (0 == 0 /\ oldx0^post23-x0^0 == 0 /\ x4^post23-oldx9^post23 == 0 /\ -x2^0+oldx2^post23 == 0 /\ x2^post23-oldx7^post23 == 0 /\ oldx4^post23-x4^0 == 0 /\ x1^post23-oldx6^post23 == 0 /\ oldx3^post23-x3^0 == 0 /\ -x1^0+oldx1^post23 == 0 /\ -oldx8^post23+x3^post23 == 0 /\ -oldx5^post23+x0^post23 == 0), cost: 1 New rule: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, 0 == 0, cost: 1 propagated equality oldx0^post23 = x0^0 propagated equality oldx9^post23 = x4^post23 propagated equality oldx2^post23 = x2^0 propagated equality oldx7^post23 = x2^post23 propagated equality oldx4^post23 = x4^0 propagated equality oldx6^post23 = x1^post23 propagated equality oldx3^post23 = x3^0 propagated equality oldx1^post23 = x1^0 propagated equality oldx8^post23 = x3^post23 propagated equality oldx5^post23 = x0^post23 Simplified Guard Original rule: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, 0 == 0, cost: 1 New rule: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 Propagated Equalities Original rule: l22 -> l21 : oldx0^0'=oldx0^post24, oldx1^0'=oldx1^post24, oldx2^0'=oldx2^post24, oldx3^0'=oldx3^post24, oldx4^0'=oldx4^post24, oldx5^0'=oldx5^post24, oldx6^0'=oldx6^post24, oldx7^0'=oldx7^post24, oldx8^0'=oldx8^post24, oldx9^0'=oldx9^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, (0 == 0 /\ x4^post24-oldx9^post24 == 0 /\ oldx2^post24-x2^0 == 0 /\ -x1^0+oldx1^post24 == 0 /\ oldx0^post24-x0^0 == 0 /\ -oldx8^post24+x3^post24 == 0 /\ x2^post24-oldx7^post24 == 0 /\ -x4^0+oldx4^post24 == 0 /\ oldx3^post24-x3^0 == 0 /\ -oldx5^post24+x0^post24 == 0 /\ x1^post24-oldx6^post24 == 0), cost: 1 New rule: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, 0 == 0, cost: 1 propagated equality oldx9^post24 = x4^post24 propagated equality oldx2^post24 = x2^0 propagated equality oldx1^post24 = x1^0 propagated equality oldx0^post24 = x0^0 propagated equality oldx8^post24 = x3^post24 propagated equality oldx7^post24 = x2^post24 propagated equality oldx4^post24 = x4^0 propagated equality oldx3^post24 = x3^0 propagated equality oldx5^post24 = x0^post24 propagated equality oldx6^post24 = x1^post24 Simplified Guard Original rule: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, 0 == 0, cost: 1 New rule: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 Propagated Equalities Original rule: l22 -> l23 : oldx0^0'=oldx0^post25, oldx1^0'=oldx1^post25, oldx2^0'=oldx2^post25, oldx3^0'=oldx3^post25, oldx4^0'=oldx4^post25, oldx5^0'=oldx5^post25, oldx6^0'=oldx6^post25, oldx7^0'=oldx7^post25, oldx8^0'=oldx8^post25, oldx9^0'=oldx9^post25, x0^0'=x0^post25, x1^0'=x1^post25, x2^0'=x2^post25, x3^0'=x3^post25, x4^0'=x4^post25, (0 == 0 /\ oldx2^post25-x2^0 == 0 /\ oldx0^post25-x0^0 == 0 /\ -oldx1^post25+x1^post25 == 0 /\ -x1^0+oldx1^post25 == 0 /\ oldx8^0-oldx8^post25 == 0 /\ -oldx9^post25+oldx9^0 == 0 /\ -oldx2^post25+x2^post25 == 0 /\ -1-oldx0^post25+x0^post25 == 0 /\ oldx3^post25-x3^0 == 0 /\ x3^post25-oldx5^post25 == 0 /\ oldx7^0-oldx7^post25 == 0 /\ -x4^0+oldx4^post25 == 0 /\ -oldx6^post25+x4^post25 == 0), cost: 1 New rule: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post25, x4^0'=x4^post25, 0 == 0, cost: 1 propagated equality oldx2^post25 = x2^0 propagated equality oldx0^post25 = x0^0 propagated equality oldx1^post25 = x1^post25 propagated equality x1^post25 = x1^0 propagated equality oldx8^post25 = oldx8^0 propagated equality oldx9^post25 = oldx9^0 propagated equality x2^post25 = x2^0 propagated equality x0^post25 = 1+x0^0 propagated equality oldx3^post25 = x3^0 propagated equality oldx5^post25 = x3^post25 propagated equality oldx7^post25 = oldx7^0 propagated equality oldx4^post25 = x4^0 propagated equality oldx6^post25 = x4^post25 Simplified Guard Original rule: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post25, x4^0'=x4^post25, 0 == 0, cost: 1 New rule: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 Removed Trivial Updates Original rule: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 New rule: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 Propagated Equalities Original rule: l24 -> l20 : oldx0^0'=oldx0^post26, oldx1^0'=oldx1^post26, oldx2^0'=oldx2^post26, oldx3^0'=oldx3^post26, oldx4^0'=oldx4^post26, oldx5^0'=oldx5^post26, oldx6^0'=oldx6^post26, oldx7^0'=oldx7^post26, oldx8^0'=oldx8^post26, oldx9^0'=oldx9^post26, x0^0'=x0^post26, x1^0'=x1^post26, x2^0'=x2^post26, x3^0'=x3^post26, x4^0'=x4^post26, (0 == 0 /\ x2^post26-oldx2^post26 == 0 /\ x3^post26-oldx5^post26 == 0 /\ oldx0^post26-x0^0 == 0 /\ oldx8^0-oldx8^post26 == 0 /\ x1^post26-oldx1^post26 == 0 /\ x0^post26-oldx0^post26 == 0 /\ 1-oldx0^post26+oldx1^post26 <= 0 /\ oldx9^0-oldx9^post26 == 0 /\ -x2^0+oldx2^post26 == 0 /\ oldx3^post26-x3^0 == 0 /\ oldx1^post26-x1^0 == 0 /\ oldx7^0-oldx7^post26 == 0 /\ x4^post26-oldx6^post26 == 0 /\ oldx4^post26-x4^0 == 0), cost: 1 New rule: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post26, x4^0'=x4^post26, (0 == 0 /\ 1+x1^0-x0^0 <= 0), cost: 1 propagated equality oldx2^post26 = x2^post26 propagated equality oldx5^post26 = x3^post26 propagated equality oldx0^post26 = x0^0 propagated equality oldx8^post26 = oldx8^0 propagated equality oldx1^post26 = x1^post26 propagated equality x0^post26 = x0^0 propagated equality oldx9^post26 = oldx9^0 propagated equality x2^post26 = x2^0 propagated equality oldx3^post26 = x3^0 propagated equality x1^post26 = x1^0 propagated equality oldx7^post26 = oldx7^0 propagated equality oldx6^post26 = x4^post26 propagated equality oldx4^post26 = x4^0 Simplified Guard Original rule: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post26, x4^0'=x4^post26, (0 == 0 /\ 1+x1^0-x0^0 <= 0), cost: 1 New rule: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 New rule: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l24 -> l22 : oldx0^0'=oldx0^post27, oldx1^0'=oldx1^post27, oldx2^0'=oldx2^post27, oldx3^0'=oldx3^post27, oldx4^0'=oldx4^post27, oldx5^0'=oldx5^post27, oldx6^0'=oldx6^post27, oldx7^0'=oldx7^post27, oldx8^0'=oldx8^post27, oldx9^0'=oldx9^post27, x0^0'=x0^post27, x1^0'=x1^post27, x2^0'=x2^post27, x3^0'=x3^post27, x4^0'=x4^post27, (0 == 0 /\ -oldx8^post27+oldx8^0 == 0 /\ x4^post27-oldx6^post27 == 0 /\ -x4^0+oldx4^post27 == 0 /\ x1^post27-oldx1^post27 == 0 /\ oldx0^post27-oldx1^post27 <= 0 /\ oldx0^post27-x0^0 == 0 /\ -oldx0^post27+x0^post27 == 0 /\ oldx7^0-oldx7^post27 == 0 /\ -oldx9^post27+oldx9^0 == 0 /\ -oldx5^post27+x3^post27 == 0 /\ -x2^0+oldx2^post27 == 0 /\ oldx3^post27-x3^0 == 0 /\ -x1^0+oldx1^post27 == 0 /\ -oldx2^post27+x2^post27 == 0), cost: 1 New rule: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post27, x4^0'=x4^post27, (0 == 0 /\ -x1^0+x0^0 <= 0), cost: 1 propagated equality oldx8^post27 = oldx8^0 propagated equality oldx6^post27 = x4^post27 propagated equality oldx4^post27 = x4^0 propagated equality oldx1^post27 = x1^post27 propagated equality oldx0^post27 = x0^0 propagated equality x0^post27 = x0^0 propagated equality oldx7^post27 = oldx7^0 propagated equality oldx9^post27 = oldx9^0 propagated equality oldx5^post27 = x3^post27 propagated equality oldx2^post27 = x2^0 propagated equality oldx3^post27 = x3^0 propagated equality x1^post27 = x1^0 propagated equality x2^post27 = x2^0 Simplified Guard Original rule: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post27, x4^0'=x4^post27, (0 == 0 /\ -x1^0+x0^0 <= 0), cost: 1 New rule: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 New rule: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l23 -> l24 : oldx0^0'=oldx0^post28, oldx1^0'=oldx1^post28, oldx2^0'=oldx2^post28, oldx3^0'=oldx3^post28, oldx4^0'=oldx4^post28, oldx5^0'=oldx5^post28, oldx6^0'=oldx6^post28, oldx7^0'=oldx7^post28, oldx8^0'=oldx8^post28, oldx9^0'=oldx9^post28, x0^0'=x0^post28, x1^0'=x1^post28, x2^0'=x2^post28, x3^0'=x3^post28, x4^0'=x4^post28, (0 == 0 /\ oldx0^post28-x0^0 == 0 /\ oldx2^post28-x2^0 == 0 /\ -oldx0^post28+x0^post28 == 0 /\ oldx8^0-oldx8^post28 == 0 /\ -x1^0+oldx1^post28 == 0 /\ -oldx9^post28+oldx9^0 == 0 /\ x1^post28-oldx1^post28 == 0 /\ x3^post28-oldx5^post28 == 0 /\ oldx3^post28-x3^0 == 0 /\ -x4^0+oldx4^post28 == 0 /\ x4^post28-oldx6^post28 == 0 /\ oldx7^0-oldx7^post28 == 0 /\ -oldx2^post28+x2^post28 == 0), cost: 1 New rule: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post28, x4^0'=x4^post28, 0 == 0, cost: 1 propagated equality oldx0^post28 = x0^0 propagated equality oldx2^post28 = x2^0 propagated equality x0^post28 = x0^0 propagated equality oldx8^post28 = oldx8^0 propagated equality oldx1^post28 = x1^0 propagated equality oldx9^post28 = oldx9^0 propagated equality x1^post28 = x1^0 propagated equality oldx5^post28 = x3^post28 propagated equality oldx3^post28 = x3^0 propagated equality oldx4^post28 = x4^0 propagated equality oldx6^post28 = x4^post28 propagated equality oldx7^post28 = oldx7^0 propagated equality x2^post28 = x2^0 Simplified Guard Original rule: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post28, x4^0'=x4^post28, 0 == 0, cost: 1 New rule: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 Removed Trivial Updates Original rule: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 New rule: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 Propagated Equalities Original rule: l25 -> l26 : oldx0^0'=oldx0^post29, oldx1^0'=oldx1^post29, oldx2^0'=oldx2^post29, oldx3^0'=oldx3^post29, oldx4^0'=oldx4^post29, oldx5^0'=oldx5^post29, oldx6^0'=oldx6^post29, oldx7^0'=oldx7^post29, oldx8^0'=oldx8^post29, oldx9^0'=oldx9^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, (0 == 0 /\ -x2^0+oldx2^post29 == 0 /\ -oldx6^post29+x1^post29 == 0 /\ oldx0^post29-x0^0 == 0 /\ -x1^0+oldx1^post29 == 0 /\ -oldx9^post29+x4^post29 == 0 /\ x2^post29-oldx7^post29 == 0 /\ x3^post29-oldx8^post29 == 0 /\ -x4^0+oldx4^post29 == 0 /\ oldx3^post29-x3^0 == 0 /\ x0^post29-oldx5^post29 == 0), cost: 1 New rule: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, 0 == 0, cost: 1 propagated equality oldx2^post29 = x2^0 propagated equality oldx6^post29 = x1^post29 propagated equality oldx0^post29 = x0^0 propagated equality oldx1^post29 = x1^0 propagated equality oldx9^post29 = x4^post29 propagated equality oldx7^post29 = x2^post29 propagated equality oldx8^post29 = x3^post29 propagated equality oldx4^post29 = x4^0 propagated equality oldx3^post29 = x3^0 propagated equality oldx5^post29 = x0^post29 Simplified Guard Original rule: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, 0 == 0, cost: 1 New rule: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 Propagated Equalities Original rule: l27 -> l26 : oldx0^0'=oldx0^post30, oldx1^0'=oldx1^post30, oldx2^0'=oldx2^post30, oldx3^0'=oldx3^post30, oldx4^0'=oldx4^post30, oldx5^0'=oldx5^post30, oldx6^0'=oldx6^post30, oldx7^0'=oldx7^post30, oldx8^0'=oldx8^post30, oldx9^0'=oldx9^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, (0 == 0 /\ x1^post30-oldx6^post30 == 0 /\ x3^post30-oldx8^post30 == 0 /\ -oldx7^post30+x2^post30 == 0 /\ -x2^0+oldx2^post30 == 0 /\ x0^post30-oldx5^post30 == 0 /\ oldx0^post30-x0^0 == 0 /\ oldx1^post30-x1^0 == 0 /\ oldx4^post30-x4^0 == 0 /\ x4^post30-oldx9^post30 == 0 /\ oldx3^post30-x3^0 == 0), cost: 1 New rule: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, 0 == 0, cost: 1 propagated equality oldx6^post30 = x1^post30 propagated equality oldx8^post30 = x3^post30 propagated equality oldx7^post30 = x2^post30 propagated equality oldx2^post30 = x2^0 propagated equality oldx5^post30 = x0^post30 propagated equality oldx0^post30 = x0^0 propagated equality oldx1^post30 = x1^0 propagated equality oldx4^post30 = x4^0 propagated equality oldx9^post30 = x4^post30 propagated equality oldx3^post30 = x3^0 Simplified Guard Original rule: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, 0 == 0, cost: 1 New rule: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 Propagated Equalities Original rule: l27 -> l28 : oldx0^0'=oldx0^post31, oldx1^0'=oldx1^post31, oldx2^0'=oldx2^post31, oldx3^0'=oldx3^post31, oldx4^0'=oldx4^post31, oldx5^0'=oldx5^post31, oldx6^0'=oldx6^post31, oldx7^0'=oldx7^post31, oldx8^0'=oldx8^post31, oldx9^0'=oldx9^post31, x0^0'=x0^post31, x1^0'=x1^post31, x2^0'=x2^post31, x3^0'=x3^post31, x4^0'=x4^post31, (0 == 0 /\ oldx0^post31-x0^0 == 0 /\ -x4^0+oldx4^post31 == 0 /\ x4^post31-oldx5^post31 == 0 /\ oldx7^0-oldx7^post31 == 0 /\ -x2^0+oldx2^post31 == 0 /\ -oldx8^post31+oldx8^0 == 0 /\ -oldx6^post31+oldx6^0 == 0 /\ oldx3^post31-x3^0 == 0 /\ x1^post31-oldx1^post31 == 0 /\ -x1^0+oldx1^post31 == 0 /\ -oldx2^post31+x2^post31 == 0 /\ -oldx9^post31+oldx9^0 == 0 /\ 1-oldx0^post31+x0^post31 == 0 /\ -oldx3^post31+x3^post31 == 0), cost: 1 New rule: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=-1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post31, 0 == 0, cost: 1 propagated equality oldx0^post31 = x0^0 propagated equality oldx4^post31 = x4^0 propagated equality oldx5^post31 = x4^post31 propagated equality oldx7^post31 = oldx7^0 propagated equality oldx2^post31 = x2^0 propagated equality oldx8^post31 = oldx8^0 propagated equality oldx6^post31 = oldx6^0 propagated equality oldx3^post31 = x3^0 propagated equality oldx1^post31 = x1^post31 propagated equality x1^post31 = x1^0 propagated equality x2^post31 = x2^0 propagated equality oldx9^post31 = oldx9^0 propagated equality x0^post31 = -1+x0^0 propagated equality x3^post31 = x3^0 Simplified Guard Original rule: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=-1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post31, 0 == 0, cost: 1 New rule: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=-1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post31, T, cost: 1 Removed Trivial Updates Original rule: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=-1+x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post31, T, cost: 1 New rule: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 Propagated Equalities Original rule: l29 -> l25 : oldx0^0'=oldx0^post32, oldx1^0'=oldx1^post32, oldx2^0'=oldx2^post32, oldx3^0'=oldx3^post32, oldx4^0'=oldx4^post32, oldx5^0'=oldx5^post32, oldx6^0'=oldx6^post32, oldx7^0'=oldx7^post32, oldx8^0'=oldx8^post32, oldx9^0'=oldx9^post32, x0^0'=x0^post32, x1^0'=x1^post32, x2^0'=x2^post32, x3^0'=x3^post32, x4^0'=x4^post32, (0 == 0 /\ oldx0^post32-x0^0 == 0 /\ oldx2^post32-x2^0 == 0 /\ -oldx2^post32+x2^post32 == 0 /\ -x1^0+oldx1^post32 == 0 /\ -oldx0^post32+x0^post32 == 0 /\ oldx8^0-oldx8^post32 == 0 /\ -oldx3^post32+x3^post32 == 0 /\ -oldx6^post32+oldx6^0 == 0 /\ -oldx1^post32+x1^post32 == 0 /\ 1+oldx0^post32-oldx1^post32 <= 0 /\ oldx3^post32-x3^0 == 0 /\ -x4^0+oldx4^post32 == 0 /\ -oldx9^post32+oldx9^0 == 0 /\ x4^post32-oldx5^post32 == 0 /\ oldx7^0-oldx7^post32 == 0), cost: 1 New rule: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post32, (0 == 0 /\ 1-x1^0+x0^0 <= 0), cost: 1 propagated equality oldx0^post32 = x0^0 propagated equality oldx2^post32 = x2^0 propagated equality x2^post32 = x2^0 propagated equality oldx1^post32 = x1^0 propagated equality x0^post32 = x0^0 propagated equality oldx8^post32 = oldx8^0 propagated equality oldx3^post32 = x3^post32 propagated equality oldx6^post32 = oldx6^0 propagated equality x1^post32 = x1^0 propagated equality x3^post32 = x3^0 propagated equality oldx4^post32 = x4^0 propagated equality oldx9^post32 = oldx9^0 propagated equality oldx5^post32 = x4^post32 propagated equality oldx7^post32 = oldx7^0 Simplified Guard Original rule: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post32, (0 == 0 /\ 1-x1^0+x0^0 <= 0), cost: 1 New rule: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 New rule: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l29 -> l27 : oldx0^0'=oldx0^post33, oldx1^0'=oldx1^post33, oldx2^0'=oldx2^post33, oldx3^0'=oldx3^post33, oldx4^0'=oldx4^post33, oldx5^0'=oldx5^post33, oldx6^0'=oldx6^post33, oldx7^0'=oldx7^post33, oldx8^0'=oldx8^post33, oldx9^0'=oldx9^post33, x0^0'=x0^post33, x1^0'=x1^post33, x2^0'=x2^post33, x3^0'=x3^post33, x4^0'=x4^post33, (0 == 0 /\ oldx0^post33-x0^0 == 0 /\ oldx4^post33-x4^0 == 0 /\ oldx9^0-oldx9^post33 == 0 /\ -oldx3^post33+x3^post33 == 0 /\ x4^post33-oldx5^post33 == 0 /\ -oldx0^post33+oldx1^post33 <= 0 /\ oldx7^0-oldx7^post33 == 0 /\ -x2^0+oldx2^post33 == 0 /\ oldx1^post33-x1^0 == 0 /\ oldx3^post33-x3^0 == 0 /\ -oldx2^post33+x2^post33 == 0 /\ -oldx0^post33+x0^post33 == 0 /\ oldx6^0-oldx6^post33 == 0 /\ -oldx1^post33+x1^post33 == 0 /\ oldx8^0-oldx8^post33 == 0), cost: 1 New rule: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post33, (0 == 0 /\ x1^0-x0^0 <= 0), cost: 1 propagated equality oldx0^post33 = x0^0 propagated equality oldx4^post33 = x4^0 propagated equality oldx9^post33 = oldx9^0 propagated equality oldx3^post33 = x3^post33 propagated equality oldx5^post33 = x4^post33 propagated equality oldx7^post33 = oldx7^0 propagated equality oldx2^post33 = x2^0 propagated equality oldx1^post33 = x1^0 propagated equality x3^post33 = x3^0 propagated equality x2^post33 = x2^0 propagated equality x0^post33 = x0^0 propagated equality oldx6^post33 = oldx6^0 propagated equality x1^post33 = x1^0 propagated equality oldx8^post33 = oldx8^0 Simplified Guard Original rule: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post33, (0 == 0 /\ x1^0-x0^0 <= 0), cost: 1 New rule: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 New rule: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 Propagated Equalities Original rule: l28 -> l29 : oldx0^0'=oldx0^post34, oldx1^0'=oldx1^post34, oldx2^0'=oldx2^post34, oldx3^0'=oldx3^post34, oldx4^0'=oldx4^post34, oldx5^0'=oldx5^post34, oldx6^0'=oldx6^post34, oldx7^0'=oldx7^post34, oldx8^0'=oldx8^post34, oldx9^0'=oldx9^post34, x0^0'=x0^post34, x1^0'=x1^post34, x2^0'=x2^post34, x3^0'=x3^post34, x4^0'=x4^post34, (0 == 0 /\ oldx0^post34-x0^0 == 0 /\ oldx4^post34-x4^0 == 0 /\ -oldx2^post34+x2^post34 == 0 /\ -oldx0^post34+x0^post34 == 0 /\ x4^post34-oldx5^post34 == 0 /\ -oldx7^post34+oldx7^0 == 0 /\ -oldx6^post34+oldx6^0 == 0 /\ -oldx1^post34+x1^post34 == 0 /\ oldx3^post34-x3^0 == 0 /\ -oldx8^post34+oldx8^0 == 0 /\ oldx1^post34-x1^0 == 0 /\ -oldx3^post34+x3^post34 == 0 /\ oldx9^0-oldx9^post34 == 0 /\ -x2^0+oldx2^post34 == 0), cost: 1 New rule: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post34, 0 == 0, cost: 1 propagated equality oldx0^post34 = x0^0 propagated equality oldx4^post34 = x4^0 propagated equality oldx2^post34 = x2^post34 propagated equality x0^post34 = x0^0 propagated equality oldx5^post34 = x4^post34 propagated equality oldx7^post34 = oldx7^0 propagated equality oldx6^post34 = oldx6^0 propagated equality oldx1^post34 = x1^post34 propagated equality oldx3^post34 = x3^0 propagated equality oldx8^post34 = oldx8^0 propagated equality x1^post34 = x1^0 propagated equality x3^post34 = x3^0 propagated equality oldx9^post34 = oldx9^0 propagated equality x2^post34 = x2^0 Simplified Guard Original rule: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post34, 0 == 0, cost: 1 New rule: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post34, T, cost: 1 Removed Trivial Updates Original rule: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^post34, T, cost: 1 New rule: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 Propagated Equalities Original rule: l10 -> l19 : oldx0^0'=oldx0^post35, oldx1^0'=oldx1^post35, oldx2^0'=oldx2^post35, oldx3^0'=oldx3^post35, oldx4^0'=oldx4^post35, oldx5^0'=oldx5^post35, oldx6^0'=oldx6^post35, oldx7^0'=oldx7^post35, oldx8^0'=oldx8^post35, oldx9^0'=oldx9^post35, x0^0'=x0^post35, x1^0'=x1^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, (0 == 0 /\ -oldx7^post35+x4^post35 == 0 /\ oldx8^0-oldx8^post35 == 0 /\ oldx2^post35-x2^0 == 0 /\ -x1^0+oldx1^post35 == 0 /\ oldx0^post35-x0^0 == 0 /\ -oldx1^post35+x1^post35 == 0 /\ -oldx0^post35+x0^post35 == 0 /\ oldx3^post35-x3^0 == 0 /\ -x4^0+oldx4^post35 == 0 /\ -oldx9^post35+oldx9^0 == 0 /\ -oldx6^post35+x3^post35 == 0 /\ x2^post35-oldx5^post35 == 0), cost: 1 New rule: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, 0 == 0, cost: 1 propagated equality oldx7^post35 = x4^post35 propagated equality oldx8^post35 = oldx8^0 propagated equality oldx2^post35 = x2^0 propagated equality oldx1^post35 = x1^0 propagated equality oldx0^post35 = x0^0 propagated equality x1^post35 = x1^0 propagated equality x0^post35 = x0^0 propagated equality oldx3^post35 = x3^0 propagated equality oldx4^post35 = x4^0 propagated equality oldx9^post35 = oldx9^0 propagated equality oldx6^post35 = x3^post35 propagated equality oldx5^post35 = x2^post35 Simplified Guard Original rule: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, 0 == 0, cost: 1 New rule: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 Removed Trivial Updates Original rule: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 New rule: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 Propagated Equalities Original rule: l30 -> l13 : oldx0^0'=oldx0^post36, oldx1^0'=oldx1^post36, oldx2^0'=oldx2^post36, oldx3^0'=oldx3^post36, oldx4^0'=oldx4^post36, oldx5^0'=oldx5^post36, oldx6^0'=oldx6^post36, oldx7^0'=oldx7^post36, oldx8^0'=oldx8^post36, oldx9^0'=oldx9^post36, x0^0'=x0^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, (0 == 0 /\ oldx9^0-oldx9^post36 == 0 /\ oldx4^post36-x4^0 == 0 /\ x1^post36-oldx5^post36 == 0 /\ -x2^0+oldx2^post36 == 0 /\ x3^post36-oldx7^post36 == 0 /\ -oldx6^post36+x2^post36 == 0 /\ oldx3^post36-x3^0 == 0 /\ -oldx0^post36+x0^post36 == 0 /\ oldx0^post36-x0^0 == 0 /\ oldx1^post36-x1^0 == 0 /\ x4^post36-oldx8^post36 == 0), cost: 1 New rule: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, 0 == 0, cost: 1 propagated equality oldx9^post36 = oldx9^0 propagated equality oldx4^post36 = x4^0 propagated equality oldx5^post36 = x1^post36 propagated equality oldx2^post36 = x2^0 propagated equality oldx7^post36 = x3^post36 propagated equality oldx6^post36 = x2^post36 propagated equality oldx3^post36 = x3^0 propagated equality oldx0^post36 = x0^post36 propagated equality x0^post36 = x0^0 propagated equality oldx1^post36 = x1^0 propagated equality oldx8^post36 = x4^post36 Simplified Guard Original rule: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, 0 == 0, cost: 1 New rule: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 New rule: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 Propagated Equalities Original rule: l30 -> l0 : oldx0^0'=oldx0^post37, oldx1^0'=oldx1^post37, oldx2^0'=oldx2^post37, oldx3^0'=oldx3^post37, oldx4^0'=oldx4^post37, oldx5^0'=oldx5^post37, oldx6^0'=oldx6^post37, oldx7^0'=oldx7^post37, oldx8^0'=oldx8^post37, oldx9^0'=oldx9^post37, x0^0'=x0^post37, x1^0'=x1^post37, x2^0'=x2^post37, x3^0'=x3^post37, x4^0'=x4^post37, (-x3^post37+x3^0 == 0 /\ x2^0-x2^post37 == 0 /\ oldx4^0-oldx4^post37 == 0 /\ oldx5^0-oldx5^post37 == 0 /\ -x0^post37+x0^0 == 0 /\ -x1^post37+x1^0 == 0 /\ oldx9^0-oldx9^post37 == 0 /\ x4^0-x4^post37 == 0 /\ oldx7^0-oldx7^post37 == 0 /\ oldx2^0-oldx2^post37 == 0 /\ -oldx1^post37+oldx1^0 == 0 /\ oldx6^0-oldx6^post37 == 0 /\ -oldx3^post37+oldx3^0 == 0 /\ oldx8^0-oldx8^post37 == 0 /\ -oldx0^post37+oldx0^0 == 0), cost: 1 New rule: l30 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality x3^post37 = x3^0 propagated equality x2^post37 = x2^0 propagated equality oldx4^post37 = oldx4^0 propagated equality oldx5^post37 = oldx5^0 propagated equality x0^post37 = x0^0 propagated equality x1^post37 = x1^0 propagated equality oldx9^post37 = oldx9^0 propagated equality x4^post37 = x4^0 propagated equality oldx7^post37 = oldx7^0 propagated equality oldx2^post37 = oldx2^0 propagated equality oldx1^post37 = oldx1^0 propagated equality oldx6^post37 = oldx6^0 propagated equality oldx3^post37 = oldx3^0 propagated equality oldx8^post37 = oldx8^0 propagated equality oldx0^post37 = oldx0^0 Simplified Guard Original rule: l30 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l0 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l0 : T, cost: 1 Propagated Equalities Original rule: l30 -> l2 : oldx0^0'=oldx0^post38, oldx1^0'=oldx1^post38, oldx2^0'=oldx2^post38, oldx3^0'=oldx3^post38, oldx4^0'=oldx4^post38, oldx5^0'=oldx5^post38, oldx6^0'=oldx6^post38, oldx7^0'=oldx7^post38, oldx8^0'=oldx8^post38, oldx9^0'=oldx9^post38, x0^0'=x0^post38, x1^0'=x1^post38, x2^0'=x2^post38, x3^0'=x3^post38, x4^0'=x4^post38, (-x1^post38+x1^0 == 0 /\ -x4^post38+x4^0 == 0 /\ -x0^post38+x0^0 == 0 /\ -oldx4^post38+oldx4^0 == 0 /\ -oldx7^post38+oldx7^0 == 0 /\ -oldx6^post38+oldx6^0 == 0 /\ -oldx2^post38+oldx2^0 == 0 /\ -oldx5^post38+oldx5^0 == 0 /\ x2^0-x2^post38 == 0 /\ -oldx8^post38+oldx8^0 == 0 /\ oldx9^0-oldx9^post38 == 0 /\ -oldx3^post38+oldx3^0 == 0 /\ -oldx0^post38+oldx0^0 == 0 /\ -oldx1^post38+oldx1^0 == 0 /\ x3^0-x3^post38 == 0), cost: 1 New rule: l30 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality x1^post38 = x1^0 propagated equality x4^post38 = x4^0 propagated equality x0^post38 = x0^0 propagated equality oldx4^post38 = oldx4^0 propagated equality oldx7^post38 = oldx7^0 propagated equality oldx6^post38 = oldx6^0 propagated equality oldx2^post38 = oldx2^0 propagated equality oldx5^post38 = oldx5^0 propagated equality x2^post38 = x2^0 propagated equality oldx8^post38 = oldx8^0 propagated equality oldx9^post38 = oldx9^0 propagated equality oldx3^post38 = oldx3^0 propagated equality oldx0^post38 = oldx0^0 propagated equality oldx1^post38 = oldx1^0 propagated equality x3^post38 = x3^0 Simplified Guard Original rule: l30 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l2 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l2 : T, cost: 1 Propagated Equalities Original rule: l30 -> l4 : oldx0^0'=oldx0^post39, oldx1^0'=oldx1^post39, oldx2^0'=oldx2^post39, oldx3^0'=oldx3^post39, oldx4^0'=oldx4^post39, oldx5^0'=oldx5^post39, oldx6^0'=oldx6^post39, oldx7^0'=oldx7^post39, oldx8^0'=oldx8^post39, oldx9^0'=oldx9^post39, x0^0'=x0^post39, x1^0'=x1^post39, x2^0'=x2^post39, x3^0'=x3^post39, x4^0'=x4^post39, (oldx8^0-oldx8^post39 == 0 /\ -x3^post39+x3^0 == 0 /\ -oldx3^post39+oldx3^0 == 0 /\ -x0^post39+x0^0 == 0 /\ -x2^post39+x2^0 == 0 /\ -oldx6^post39+oldx6^0 == 0 /\ -oldx2^post39+oldx2^0 == 0 /\ oldx5^0-oldx5^post39 == 0 /\ x1^0-x1^post39 == 0 /\ -oldx0^post39+oldx0^0 == 0 /\ oldx7^0-oldx7^post39 == 0 /\ oldx1^0-oldx1^post39 == 0 /\ x4^0-x4^post39 == 0 /\ -oldx9^post39+oldx9^0 == 0 /\ oldx4^0-oldx4^post39 == 0), cost: 1 New rule: l30 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx8^post39 = oldx8^0 propagated equality x3^post39 = x3^0 propagated equality oldx3^post39 = oldx3^0 propagated equality x0^post39 = x0^0 propagated equality x2^post39 = x2^0 propagated equality oldx6^post39 = oldx6^0 propagated equality oldx2^post39 = oldx2^0 propagated equality oldx5^post39 = oldx5^0 propagated equality x1^post39 = x1^0 propagated equality oldx0^post39 = oldx0^0 propagated equality oldx7^post39 = oldx7^0 propagated equality oldx1^post39 = oldx1^0 propagated equality x4^post39 = x4^0 propagated equality oldx9^post39 = oldx9^0 propagated equality oldx4^post39 = oldx4^0 Simplified Guard Original rule: l30 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l4 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l4 : T, cost: 1 Propagated Equalities Original rule: l30 -> l3 : oldx0^0'=oldx0^post40, oldx1^0'=oldx1^post40, oldx2^0'=oldx2^post40, oldx3^0'=oldx3^post40, oldx4^0'=oldx4^post40, oldx5^0'=oldx5^post40, oldx6^0'=oldx6^post40, oldx7^0'=oldx7^post40, oldx8^0'=oldx8^post40, oldx9^0'=oldx9^post40, x0^0'=x0^post40, x1^0'=x1^post40, x2^0'=x2^post40, x3^0'=x3^post40, x4^0'=x4^post40, (oldx3^0-oldx3^post40 == 0 /\ x2^0-x2^post40 == 0 /\ oldx5^0-oldx5^post40 == 0 /\ -x0^post40+x0^0 == 0 /\ -x3^post40+x3^0 == 0 /\ -x1^post40+x1^0 == 0 /\ oldx4^0-oldx4^post40 == 0 /\ oldx9^0-oldx9^post40 == 0 /\ oldx7^0-oldx7^post40 == 0 /\ x4^0-x4^post40 == 0 /\ oldx2^0-oldx2^post40 == 0 /\ -oldx6^post40+oldx6^0 == 0 /\ oldx1^0-oldx1^post40 == 0 /\ oldx8^0-oldx8^post40 == 0 /\ -oldx0^post40+oldx0^0 == 0), cost: 1 New rule: l30 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx3^post40 = oldx3^0 propagated equality x2^post40 = x2^0 propagated equality oldx5^post40 = oldx5^0 propagated equality x0^post40 = x0^0 propagated equality x3^post40 = x3^0 propagated equality x1^post40 = x1^0 propagated equality oldx4^post40 = oldx4^0 propagated equality oldx9^post40 = oldx9^0 propagated equality oldx7^post40 = oldx7^0 propagated equality x4^post40 = x4^0 propagated equality oldx2^post40 = oldx2^0 propagated equality oldx6^post40 = oldx6^0 propagated equality oldx1^post40 = oldx1^0 propagated equality oldx8^post40 = oldx8^0 propagated equality oldx0^post40 = oldx0^0 Simplified Guard Original rule: l30 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l3 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l3 : T, cost: 1 Propagated Equalities Original rule: l30 -> l6 : oldx0^0'=oldx0^post41, oldx1^0'=oldx1^post41, oldx2^0'=oldx2^post41, oldx3^0'=oldx3^post41, oldx4^0'=oldx4^post41, oldx5^0'=oldx5^post41, oldx6^0'=oldx6^post41, oldx7^0'=oldx7^post41, oldx8^0'=oldx8^post41, oldx9^0'=oldx9^post41, x0^0'=x0^post41, x1^0'=x1^post41, x2^0'=x2^post41, x3^0'=x3^post41, x4^0'=x4^post41, (-x3^post41+x3^0 == 0 /\ -x0^post41+x0^0 == 0 /\ -x1^post41+x1^0 == 0 /\ -x4^post41+x4^0 == 0 /\ x2^0-x2^post41 == 0 /\ oldx9^0-oldx9^post41 == 0 /\ -oldx3^post41+oldx3^0 == 0 /\ -oldx4^post41+oldx4^0 == 0 /\ -oldx5^post41+oldx5^0 == 0 /\ oldx7^0-oldx7^post41 == 0 /\ -oldx2^post41+oldx2^0 == 0 /\ -oldx1^post41+oldx1^0 == 0 /\ oldx6^0-oldx6^post41 == 0 /\ -oldx0^post41+oldx0^0 == 0 /\ oldx8^0-oldx8^post41 == 0), cost: 1 New rule: l30 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality x3^post41 = x3^0 propagated equality x0^post41 = x0^0 propagated equality x1^post41 = x1^0 propagated equality x4^post41 = x4^0 propagated equality x2^post41 = x2^0 propagated equality oldx9^post41 = oldx9^0 propagated equality oldx3^post41 = oldx3^0 propagated equality oldx4^post41 = oldx4^0 propagated equality oldx5^post41 = oldx5^0 propagated equality oldx7^post41 = oldx7^0 propagated equality oldx2^post41 = oldx2^0 propagated equality oldx1^post41 = oldx1^0 propagated equality oldx6^post41 = oldx6^0 propagated equality oldx0^post41 = oldx0^0 propagated equality oldx8^post41 = oldx8^0 Simplified Guard Original rule: l30 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l6 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l6 : T, cost: 1 Propagated Equalities Original rule: l30 -> l5 : oldx0^0'=oldx0^post42, oldx1^0'=oldx1^post42, oldx2^0'=oldx2^post42, oldx3^0'=oldx3^post42, oldx4^0'=oldx4^post42, oldx5^0'=oldx5^post42, oldx6^0'=oldx6^post42, oldx7^0'=oldx7^post42, oldx8^0'=oldx8^post42, oldx9^0'=oldx9^post42, x0^0'=x0^post42, x1^0'=x1^post42, x2^0'=x2^post42, x3^0'=x3^post42, x4^0'=x4^post42, (-x0^post42+x0^0 == 0 /\ -x4^post42+x4^0 == 0 /\ -oldx5^post42+oldx5^0 == 0 /\ -x1^post42+x1^0 == 0 /\ oldx4^0-oldx4^post42 == 0 /\ -oldx3^post42+oldx3^0 == 0 /\ -oldx2^post42+oldx2^0 == 0 /\ -oldx7^post42+oldx7^0 == 0 /\ x2^0-x2^post42 == 0 /\ -oldx8^post42+oldx8^0 == 0 /\ oldx9^0-oldx9^post42 == 0 /\ -oldx0^post42+oldx0^0 == 0 /\ -oldx6^post42+oldx6^0 == 0 /\ -oldx1^post42+oldx1^0 == 0 /\ x3^0-x3^post42 == 0), cost: 1 New rule: l30 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality x0^post42 = x0^0 propagated equality x4^post42 = x4^0 propagated equality oldx5^post42 = oldx5^0 propagated equality x1^post42 = x1^0 propagated equality oldx4^post42 = oldx4^0 propagated equality oldx3^post42 = oldx3^0 propagated equality oldx2^post42 = oldx2^0 propagated equality oldx7^post42 = oldx7^0 propagated equality x2^post42 = x2^0 propagated equality oldx8^post42 = oldx8^0 propagated equality oldx9^post42 = oldx9^0 propagated equality oldx0^post42 = oldx0^0 propagated equality oldx6^post42 = oldx6^0 propagated equality oldx1^post42 = oldx1^0 propagated equality x3^post42 = x3^0 Simplified Guard Original rule: l30 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l5 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l5 : T, cost: 1 Propagated Equalities Original rule: l30 -> l8 : oldx0^0'=oldx0^post43, oldx1^0'=oldx1^post43, oldx2^0'=oldx2^post43, oldx3^0'=oldx3^post43, oldx4^0'=oldx4^post43, oldx5^0'=oldx5^post43, oldx6^0'=oldx6^post43, oldx7^0'=oldx7^post43, oldx8^0'=oldx8^post43, oldx9^0'=oldx9^post43, x0^0'=x0^post43, x1^0'=x1^post43, x2^0'=x2^post43, x3^0'=x3^post43, x4^0'=x4^post43, (-oldx5^post43+oldx5^0 == 0 /\ -x2^post43+x2^0 == 0 /\ -x3^post43+x3^0 == 0 /\ -x0^post43+x0^0 == 0 /\ -oldx3^post43+oldx3^0 == 0 /\ oldx8^0-oldx8^post43 == 0 /\ -oldx2^post43+oldx2^0 == 0 /\ x1^0-x1^post43 == 0 /\ oldx7^0-oldx7^post43 == 0 /\ x4^0-x4^post43 == 0 /\ -oldx0^post43+oldx0^0 == 0 /\ -oldx9^post43+oldx9^0 == 0 /\ oldx4^0-oldx4^post43 == 0 /\ -oldx6^post43+oldx6^0 == 0 /\ oldx1^0-oldx1^post43 == 0), cost: 1 New rule: l30 -> l8 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx5^post43 = oldx5^0 propagated equality x2^post43 = x2^0 propagated equality x3^post43 = x3^0 propagated equality x0^post43 = x0^0 propagated equality oldx3^post43 = oldx3^0 propagated equality oldx8^post43 = oldx8^0 propagated equality oldx2^post43 = oldx2^0 propagated equality x1^post43 = x1^0 propagated equality oldx7^post43 = oldx7^0 propagated equality x4^post43 = x4^0 propagated equality oldx0^post43 = oldx0^0 propagated equality oldx9^post43 = oldx9^0 propagated equality oldx4^post43 = oldx4^0 propagated equality oldx6^post43 = oldx6^0 propagated equality oldx1^post43 = oldx1^0 Simplified Guard Original rule: l30 -> l8 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l8 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l8 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l8 : T, cost: 1 Propagated Equalities Original rule: l30 -> l7 : oldx0^0'=oldx0^post44, oldx1^0'=oldx1^post44, oldx2^0'=oldx2^post44, oldx3^0'=oldx3^post44, oldx4^0'=oldx4^post44, oldx5^0'=oldx5^post44, oldx6^0'=oldx6^post44, oldx7^0'=oldx7^post44, oldx8^0'=oldx8^post44, oldx9^0'=oldx9^post44, x0^0'=x0^post44, x1^0'=x1^post44, x2^0'=x2^post44, x3^0'=x3^post44, x4^0'=x4^post44, (x2^0-x2^post44 == 0 /\ oldx3^0-oldx3^post44 == 0 /\ -x3^post44+x3^0 == 0 /\ oldx8^0-oldx8^post44 == 0 /\ oldx4^0-oldx4^post44 == 0 /\ -x1^post44+x1^0 == 0 /\ -x0^post44+x0^0 == 0 /\ oldx9^0-oldx9^post44 == 0 /\ x4^0-x4^post44 == 0 /\ oldx5^0-oldx5^post44 == 0 /\ oldx2^0-oldx2^post44 == 0 /\ oldx7^0-oldx7^post44 == 0 /\ -oldx0^post44+oldx0^0 == 0 /\ oldx1^0-oldx1^post44 == 0 /\ oldx6^0-oldx6^post44 == 0), cost: 1 New rule: l30 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality x2^post44 = x2^0 propagated equality oldx3^post44 = oldx3^0 propagated equality x3^post44 = x3^0 propagated equality oldx8^post44 = oldx8^0 propagated equality oldx4^post44 = oldx4^0 propagated equality x1^post44 = x1^0 propagated equality x0^post44 = x0^0 propagated equality oldx9^post44 = oldx9^0 propagated equality x4^post44 = x4^0 propagated equality oldx5^post44 = oldx5^0 propagated equality oldx2^post44 = oldx2^0 propagated equality oldx7^post44 = oldx7^0 propagated equality oldx0^post44 = oldx0^0 propagated equality oldx1^post44 = oldx1^0 propagated equality oldx6^post44 = oldx6^0 Simplified Guard Original rule: l30 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l7 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l7 : T, cost: 1 Propagated Equalities Original rule: l30 -> l9 : oldx0^0'=oldx0^post45, oldx1^0'=oldx1^post45, oldx2^0'=oldx2^post45, oldx3^0'=oldx3^post45, oldx4^0'=oldx4^post45, oldx5^0'=oldx5^post45, oldx6^0'=oldx6^post45, oldx7^0'=oldx7^post45, oldx8^0'=oldx8^post45, oldx9^0'=oldx9^post45, x0^0'=x0^post45, x1^0'=x1^post45, x2^0'=x2^post45, x3^0'=x3^post45, x4^0'=x4^post45, (-oldx8^post45+oldx8^0 == 0 /\ -oldx6^post45+oldx6^0 == 0 /\ -x1^post45+x1^0 == 0 /\ -x0^post45+x0^0 == 0 /\ x2^0-x2^post45 == 0 /\ -oldx3^post45+oldx3^0 == 0 /\ oldx7^0-oldx7^post45 == 0 /\ -oldx4^post45+oldx4^0 == 0 /\ -oldx9^post45+oldx9^0 == 0 /\ -oldx5^post45+oldx5^0 == 0 /\ -x4^post45+x4^0 == 0 /\ -oldx2^post45+oldx2^0 == 0 /\ -oldx0^post45+oldx0^0 == 0 /\ -x3^post45+x3^0 == 0 /\ -oldx1^post45+oldx1^0 == 0), cost: 1 New rule: l30 -> l9 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx8^post45 = oldx8^0 propagated equality oldx6^post45 = oldx6^0 propagated equality x1^post45 = x1^0 propagated equality x0^post45 = x0^0 propagated equality x2^post45 = x2^0 propagated equality oldx3^post45 = oldx3^0 propagated equality oldx7^post45 = oldx7^0 propagated equality oldx4^post45 = oldx4^0 propagated equality oldx9^post45 = oldx9^0 propagated equality oldx5^post45 = oldx5^0 propagated equality x4^post45 = x4^0 propagated equality oldx2^post45 = oldx2^0 propagated equality oldx0^post45 = oldx0^0 propagated equality x3^post45 = x3^0 propagated equality oldx1^post45 = oldx1^0 Simplified Guard Original rule: l30 -> l9 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l9 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l9 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l9 : T, cost: 1 Propagated Equalities Original rule: l30 -> l11 : oldx0^0'=oldx0^post46, oldx1^0'=oldx1^post46, oldx2^0'=oldx2^post46, oldx3^0'=oldx3^post46, oldx4^0'=oldx4^post46, oldx5^0'=oldx5^post46, oldx6^0'=oldx6^post46, oldx7^0'=oldx7^post46, oldx8^0'=oldx8^post46, oldx9^0'=oldx9^post46, x0^0'=x0^post46, x1^0'=x1^post46, x2^0'=x2^post46, x3^0'=x3^post46, x4^0'=x4^post46, (-oldx5^post46+oldx5^0 == 0 /\ -x1^post46+x1^0 == 0 /\ -oldx8^post46+oldx8^0 == 0 /\ oldx7^0-oldx7^post46 == 0 /\ -oldx0^post46+oldx0^0 == 0 /\ -oldx3^post46+oldx3^0 == 0 /\ oldx4^0-oldx4^post46 == 0 /\ -oldx9^post46+oldx9^0 == 0 /\ -x4^post46+x4^0 == 0 /\ -oldx2^post46+oldx2^0 == 0 /\ -x0^post46+x0^0 == 0 /\ x3^0-x3^post46 == 0 /\ -oldx1^post46+oldx1^0 == 0 /\ x2^0-x2^post46 == 0 /\ -oldx6^post46+oldx6^0 == 0), cost: 1 New rule: l30 -> l11 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx5^post46 = oldx5^0 propagated equality x1^post46 = x1^0 propagated equality oldx8^post46 = oldx8^0 propagated equality oldx7^post46 = oldx7^0 propagated equality oldx0^post46 = oldx0^0 propagated equality oldx3^post46 = oldx3^0 propagated equality oldx4^post46 = oldx4^0 propagated equality oldx9^post46 = oldx9^0 propagated equality x4^post46 = x4^0 propagated equality oldx2^post46 = oldx2^0 propagated equality x0^post46 = x0^0 propagated equality x3^post46 = x3^0 propagated equality oldx1^post46 = oldx1^0 propagated equality x2^post46 = x2^0 propagated equality oldx6^post46 = oldx6^0 Simplified Guard Original rule: l30 -> l11 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l11 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l11 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l11 : T, cost: 1 Propagated Equalities Original rule: l30 -> l12 : oldx0^0'=oldx0^post47, oldx1^0'=oldx1^post47, oldx2^0'=oldx2^post47, oldx3^0'=oldx3^post47, oldx4^0'=oldx4^post47, oldx5^0'=oldx5^post47, oldx6^0'=oldx6^post47, oldx7^0'=oldx7^post47, oldx8^0'=oldx8^post47, oldx9^0'=oldx9^post47, x0^0'=x0^post47, x1^0'=x1^post47, x2^0'=x2^post47, x3^0'=x3^post47, x4^0'=x4^post47, (-oldx5^post47+oldx5^0 == 0 /\ -x3^post47+x3^0 == 0 /\ -x2^post47+x2^0 == 0 /\ oldx8^0-oldx8^post47 == 0 /\ -oldx0^post47+oldx0^0 == 0 /\ -oldx3^post47+oldx3^0 == 0 /\ -oldx2^post47+oldx2^0 == 0 /\ -oldx9^post47+oldx9^0 == 0 /\ -x0^post47+x0^0 == 0 /\ oldx7^0-oldx7^post47 == 0 /\ x1^0-x1^post47 == 0 /\ x4^0-x4^post47 == 0 /\ oldx4^0-oldx4^post47 == 0 /\ -oldx6^post47+oldx6^0 == 0 /\ oldx1^0-oldx1^post47 == 0), cost: 1 New rule: l30 -> l12 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx5^post47 = oldx5^0 propagated equality x3^post47 = x3^0 propagated equality x2^post47 = x2^0 propagated equality oldx8^post47 = oldx8^0 propagated equality oldx0^post47 = oldx0^0 propagated equality oldx3^post47 = oldx3^0 propagated equality oldx2^post47 = oldx2^0 propagated equality oldx9^post47 = oldx9^0 propagated equality x0^post47 = x0^0 propagated equality oldx7^post47 = oldx7^0 propagated equality x1^post47 = x1^0 propagated equality x4^post47 = x4^0 propagated equality oldx4^post47 = oldx4^0 propagated equality oldx6^post47 = oldx6^0 propagated equality oldx1^post47 = oldx1^0 Simplified Guard Original rule: l30 -> l12 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l12 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l12 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l12 : T, cost: 1 Propagated Equalities Original rule: l30 -> l13 : oldx0^0'=oldx0^post48, oldx1^0'=oldx1^post48, oldx2^0'=oldx2^post48, oldx3^0'=oldx3^post48, oldx4^0'=oldx4^post48, oldx5^0'=oldx5^post48, oldx6^0'=oldx6^post48, oldx7^0'=oldx7^post48, oldx8^0'=oldx8^post48, oldx9^0'=oldx9^post48, x0^0'=x0^post48, x1^0'=x1^post48, x2^0'=x2^post48, x3^0'=x3^post48, x4^0'=x4^post48, (oldx3^0-oldx3^post48 == 0 /\ -x4^post48+x4^0 == 0 /\ -x3^post48+x3^0 == 0 /\ oldx8^0-oldx8^post48 == 0 /\ oldx5^0-oldx5^post48 == 0 /\ oldx2^0-oldx2^post48 == 0 /\ oldx9^0-oldx9^post48 == 0 /\ oldx6^0-oldx6^post48 == 0 /\ -x1^post48+x1^0 == 0 /\ -x0^post48+x0^0 == 0 /\ oldx7^0-oldx7^post48 == 0 /\ -oldx0^post48+oldx0^0 == 0 /\ x2^0-x2^post48 == 0 /\ oldx1^0-oldx1^post48 == 0 /\ oldx4^0-oldx4^post48 == 0), cost: 1 New rule: l30 -> l13 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx3^post48 = oldx3^0 propagated equality x4^post48 = x4^0 propagated equality x3^post48 = x3^0 propagated equality oldx8^post48 = oldx8^0 propagated equality oldx5^post48 = oldx5^0 propagated equality oldx2^post48 = oldx2^0 propagated equality oldx9^post48 = oldx9^0 propagated equality oldx6^post48 = oldx6^0 propagated equality x1^post48 = x1^0 propagated equality x0^post48 = x0^0 propagated equality oldx7^post48 = oldx7^0 propagated equality oldx0^post48 = oldx0^0 propagated equality x2^post48 = x2^0 propagated equality oldx1^post48 = oldx1^0 propagated equality oldx4^post48 = oldx4^0 Simplified Guard Original rule: l30 -> l13 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l13 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l13 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l13 : T, cost: 1 Propagated Equalities Original rule: l30 -> l15 : oldx0^0'=oldx0^post49, oldx1^0'=oldx1^post49, oldx2^0'=oldx2^post49, oldx3^0'=oldx3^post49, oldx4^0'=oldx4^post49, oldx5^0'=oldx5^post49, oldx6^0'=oldx6^post49, oldx7^0'=oldx7^post49, oldx8^0'=oldx8^post49, oldx9^0'=oldx9^post49, x0^0'=x0^post49, x1^0'=x1^post49, x2^0'=x2^post49, x3^0'=x3^post49, x4^0'=x4^post49, (-oldx8^post49+oldx8^0 == 0 /\ -oldx5^post49+oldx5^0 == 0 /\ oldx7^0-oldx7^post49 == 0 /\ -oldx9^post49+oldx9^0 == 0 /\ x2^0-x2^post49 == 0 /\ oldx4^0-oldx4^post49 == 0 /\ -oldx3^post49+oldx3^0 == 0 /\ -oldx2^post49+oldx2^0 == 0 /\ -x3^post49+x3^0 == 0 /\ -x0^post49+x0^0 == 0 /\ -x1^post49+x1^0 == 0 /\ -oldx0^post49+oldx0^0 == 0 /\ -oldx1^post49+oldx1^0 == 0 /\ x4^0-x4^post49 == 0 /\ -oldx6^post49+oldx6^0 == 0), cost: 1 New rule: l30 -> l15 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx8^post49 = oldx8^0 propagated equality oldx5^post49 = oldx5^0 propagated equality oldx7^post49 = oldx7^0 propagated equality oldx9^post49 = oldx9^0 propagated equality x2^post49 = x2^0 propagated equality oldx4^post49 = oldx4^0 propagated equality oldx3^post49 = oldx3^0 propagated equality oldx2^post49 = oldx2^0 propagated equality x3^post49 = x3^0 propagated equality x0^post49 = x0^0 propagated equality x1^post49 = x1^0 propagated equality oldx0^post49 = oldx0^0 propagated equality oldx1^post49 = oldx1^0 propagated equality x4^post49 = x4^0 propagated equality oldx6^post49 = oldx6^0 Simplified Guard Original rule: l30 -> l15 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l15 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l15 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l15 : T, cost: 1 Propagated Equalities Original rule: l30 -> l14 : oldx0^0'=oldx0^post50, oldx1^0'=oldx1^post50, oldx2^0'=oldx2^post50, oldx3^0'=oldx3^post50, oldx4^0'=oldx4^post50, oldx5^0'=oldx5^post50, oldx6^0'=oldx6^post50, oldx7^0'=oldx7^post50, oldx8^0'=oldx8^post50, oldx9^0'=oldx9^post50, x0^0'=x0^post50, x1^0'=x1^post50, x2^0'=x2^post50, x3^0'=x3^post50, x4^0'=x4^post50, (-oldx7^post50+oldx7^0 == 0 /\ -oldx0^post50+oldx0^0 == 0 /\ -oldx2^post50+oldx2^0 == 0 /\ -oldx8^post50+oldx8^0 == 0 /\ -x1^post50+x1^0 == 0 /\ -oldx3^post50+oldx3^0 == 0 /\ oldx9^0-oldx9^post50 == 0 /\ -oldx1^post50+oldx1^0 == 0 /\ -oldx6^post50+oldx6^0 == 0 /\ -x4^post50+x4^0 == 0 /\ -oldx5^post50+oldx5^0 == 0 /\ x3^0-x3^post50 == 0 /\ -x0^post50+x0^0 == 0 /\ x2^0-x2^post50 == 0 /\ -oldx4^post50+oldx4^0 == 0), cost: 1 New rule: l30 -> l14 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx7^post50 = oldx7^0 propagated equality oldx0^post50 = oldx0^0 propagated equality oldx2^post50 = oldx2^0 propagated equality oldx8^post50 = oldx8^0 propagated equality x1^post50 = x1^0 propagated equality oldx3^post50 = oldx3^0 propagated equality oldx9^post50 = oldx9^0 propagated equality oldx1^post50 = oldx1^0 propagated equality oldx6^post50 = oldx6^0 propagated equality x4^post50 = x4^0 propagated equality oldx5^post50 = oldx5^0 propagated equality x3^post50 = x3^0 propagated equality x0^post50 = x0^0 propagated equality x2^post50 = x2^0 propagated equality oldx4^post50 = oldx4^0 Simplified Guard Original rule: l30 -> l14 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l14 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l14 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l14 : T, cost: 1 Propagated Equalities Original rule: l30 -> l16 : oldx0^0'=oldx0^post51, oldx1^0'=oldx1^post51, oldx2^0'=oldx2^post51, oldx3^0'=oldx3^post51, oldx4^0'=oldx4^post51, oldx5^0'=oldx5^post51, oldx6^0'=oldx6^post51, oldx7^0'=oldx7^post51, oldx8^0'=oldx8^post51, oldx9^0'=oldx9^post51, x0^0'=x0^post51, x1^0'=x1^post51, x2^0'=x2^post51, x3^0'=x3^post51, x4^0'=x4^post51, (-oldx0^post51+oldx0^0 == 0 /\ -oldx2^post51+oldx2^0 == 0 /\ -x1^post51+x1^0 == 0 /\ oldx7^0-oldx7^post51 == 0 /\ -x3^post51+x3^0 == 0 /\ -oldx8^post51+oldx8^0 == 0 /\ oldx4^0-oldx4^post51 == 0 /\ x2^0-x2^post51 == 0 /\ -oldx9^post51+oldx9^0 == 0 /\ -oldx3^post51+oldx3^0 == 0 /\ -oldx6^post51+oldx6^0 == 0 /\ -oldx1^post51+oldx1^0 == 0 /\ -oldx5^post51+oldx5^0 == 0 /\ -x4^post51+x4^0 == 0 /\ -x0^post51+x0^0 == 0), cost: 1 New rule: l30 -> l16 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx0^post51 = oldx0^0 propagated equality oldx2^post51 = oldx2^0 propagated equality x1^post51 = x1^0 propagated equality oldx7^post51 = oldx7^0 propagated equality x3^post51 = x3^0 propagated equality oldx8^post51 = oldx8^0 propagated equality oldx4^post51 = oldx4^0 propagated equality x2^post51 = x2^0 propagated equality oldx9^post51 = oldx9^0 propagated equality oldx3^post51 = oldx3^0 propagated equality oldx6^post51 = oldx6^0 propagated equality oldx1^post51 = oldx1^0 propagated equality oldx5^post51 = oldx5^0 propagated equality x4^post51 = x4^0 propagated equality x0^post51 = x0^0 Simplified Guard Original rule: l30 -> l16 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l16 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l16 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l16 : T, cost: 1 Propagated Equalities Original rule: l30 -> l18 : oldx0^0'=oldx0^post52, oldx1^0'=oldx1^post52, oldx2^0'=oldx2^post52, oldx3^0'=oldx3^post52, oldx4^0'=oldx4^post52, oldx5^0'=oldx5^post52, oldx6^0'=oldx6^post52, oldx7^0'=oldx7^post52, oldx8^0'=oldx8^post52, oldx9^0'=oldx9^post52, x0^0'=x0^post52, x1^0'=x1^post52, x2^0'=x2^post52, x3^0'=x3^post52, x4^0'=x4^post52, (oldx9^0-oldx9^post52 == 0 /\ oldx7^0-oldx7^post52 == 0 /\ x1^0-x1^post52 == 0 /\ oldx4^0-oldx4^post52 == 0 /\ x2^0-x2^post52 == 0 /\ -x3^post52+x3^0 == 0 /\ -oldx3^post52+oldx3^0 == 0 /\ oldx1^0-oldx1^post52 == 0 /\ -oldx0^post52+oldx0^0 == 0 /\ oldx2^0-oldx2^post52 == 0 /\ oldx8^0-oldx8^post52 == 0 /\ x4^0-x4^post52 == 0 /\ -oldx6^post52+oldx6^0 == 0 /\ -x0^post52+x0^0 == 0 /\ oldx5^0-oldx5^post52 == 0), cost: 1 New rule: l30 -> l18 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx9^post52 = oldx9^0 propagated equality oldx7^post52 = oldx7^0 propagated equality x1^post52 = x1^0 propagated equality oldx4^post52 = oldx4^0 propagated equality x2^post52 = x2^0 propagated equality x3^post52 = x3^0 propagated equality oldx3^post52 = oldx3^0 propagated equality oldx1^post52 = oldx1^0 propagated equality oldx0^post52 = oldx0^0 propagated equality oldx2^post52 = oldx2^0 propagated equality oldx8^post52 = oldx8^0 propagated equality x4^post52 = x4^0 propagated equality oldx6^post52 = oldx6^0 propagated equality x0^post52 = x0^0 propagated equality oldx5^post52 = oldx5^0 Simplified Guard Original rule: l30 -> l18 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l18 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l18 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l18 : T, cost: 1 Propagated Equalities Original rule: l30 -> l17 : oldx0^0'=oldx0^post53, oldx1^0'=oldx1^post53, oldx2^0'=oldx2^post53, oldx3^0'=oldx3^post53, oldx4^0'=oldx4^post53, oldx5^0'=oldx5^post53, oldx6^0'=oldx6^post53, oldx7^0'=oldx7^post53, oldx8^0'=oldx8^post53, oldx9^0'=oldx9^post53, x0^0'=x0^post53, x1^0'=x1^post53, x2^0'=x2^post53, x3^0'=x3^post53, x4^0'=x4^post53, (-oldx1^post53+oldx1^0 == 0 /\ -oldx5^post53+oldx5^0 == 0 /\ -oldx8^post53+oldx8^0 == 0 /\ -oldx2^post53+oldx2^0 == 0 /\ -x1^post53+x1^0 == 0 /\ -oldx3^post53+oldx3^0 == 0 /\ -oldx4^post53+oldx4^0 == 0 /\ oldx9^0-oldx9^post53 == 0 /\ -oldx0^post53+oldx0^0 == 0 /\ -oldx6^post53+oldx6^0 == 0 /\ x3^0-x3^post53 == 0 /\ -x0^post53+x0^0 == 0 /\ -x4^post53+x4^0 == 0 /\ -oldx7^post53+oldx7^0 == 0 /\ x2^0-x2^post53 == 0), cost: 1 New rule: l30 -> l17 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx1^post53 = oldx1^0 propagated equality oldx5^post53 = oldx5^0 propagated equality oldx8^post53 = oldx8^0 propagated equality oldx2^post53 = oldx2^0 propagated equality x1^post53 = x1^0 propagated equality oldx3^post53 = oldx3^0 propagated equality oldx4^post53 = oldx4^0 propagated equality oldx9^post53 = oldx9^0 propagated equality oldx0^post53 = oldx0^0 propagated equality oldx6^post53 = oldx6^0 propagated equality x3^post53 = x3^0 propagated equality x0^post53 = x0^0 propagated equality x4^post53 = x4^0 propagated equality oldx7^post53 = oldx7^0 propagated equality x2^post53 = x2^0 Simplified Guard Original rule: l30 -> l17 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l17 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l17 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l17 : T, cost: 1 Propagated Equalities Original rule: l30 -> l21 : oldx0^0'=oldx0^post54, oldx1^0'=oldx1^post54, oldx2^0'=oldx2^post54, oldx3^0'=oldx3^post54, oldx4^0'=oldx4^post54, oldx5^0'=oldx5^post54, oldx6^0'=oldx6^post54, oldx7^0'=oldx7^post54, oldx8^0'=oldx8^post54, oldx9^0'=oldx9^post54, x0^0'=x0^post54, x1^0'=x1^post54, x2^0'=x2^post54, x3^0'=x3^post54, x4^0'=x4^post54, (-oldx7^post54+oldx7^0 == 0 /\ -x1^post54+x1^0 == 0 /\ -oldx8^post54+oldx8^0 == 0 /\ oldx9^0-oldx9^post54 == 0 /\ -oldx3^post54+oldx3^0 == 0 /\ -oldx6^post54+oldx6^0 == 0 /\ oldx1^0-oldx1^post54 == 0 /\ -oldx0^post54+oldx0^0 == 0 /\ -x0^post54+x0^0 == 0 /\ -x4^post54+x4^0 == 0 /\ -oldx5^post54+oldx5^0 == 0 /\ -oldx2^post54+oldx2^0 == 0 /\ x3^0-x3^post54 == 0 /\ -oldx4^post54+oldx4^0 == 0 /\ x2^0-x2^post54 == 0), cost: 1 New rule: l30 -> l21 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx7^post54 = oldx7^0 propagated equality x1^post54 = x1^0 propagated equality oldx8^post54 = oldx8^0 propagated equality oldx9^post54 = oldx9^0 propagated equality oldx3^post54 = oldx3^0 propagated equality oldx6^post54 = oldx6^0 propagated equality oldx1^post54 = oldx1^0 propagated equality oldx0^post54 = oldx0^0 propagated equality x0^post54 = x0^0 propagated equality x4^post54 = x4^0 propagated equality oldx5^post54 = oldx5^0 propagated equality oldx2^post54 = oldx2^0 propagated equality x3^post54 = x3^0 propagated equality oldx4^post54 = oldx4^0 propagated equality x2^post54 = x2^0 Simplified Guard Original rule: l30 -> l21 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l21 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l21 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l21 : T, cost: 1 Propagated Equalities Original rule: l30 -> l19 : oldx0^0'=oldx0^post55, oldx1^0'=oldx1^post55, oldx2^0'=oldx2^post55, oldx3^0'=oldx3^post55, oldx4^0'=oldx4^post55, oldx5^0'=oldx5^post55, oldx6^0'=oldx6^post55, oldx7^0'=oldx7^post55, oldx8^0'=oldx8^post55, oldx9^0'=oldx9^post55, x0^0'=x0^post55, x1^0'=x1^post55, x2^0'=x2^post55, x3^0'=x3^post55, x4^0'=x4^post55, (-oldx3^post55+oldx3^0 == 0 /\ -x3^post55+x3^0 == 0 /\ oldx7^0-oldx7^post55 == 0 /\ -x1^post55+x1^0 == 0 /\ -oldx8^post55+oldx8^0 == 0 /\ x2^0-x2^post55 == 0 /\ oldx4^0-oldx4^post55 == 0 /\ -oldx0^post55+oldx0^0 == 0 /\ -oldx6^post55+oldx6^0 == 0 /\ oldx1^0-oldx1^post55 == 0 /\ -oldx2^post55+oldx2^0 == 0 /\ -oldx9^post55+oldx9^0 == 0 /\ -x0^post55+x0^0 == 0 /\ -x4^post55+x4^0 == 0 /\ -oldx5^post55+oldx5^0 == 0), cost: 1 New rule: l30 -> l19 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx3^post55 = oldx3^0 propagated equality x3^post55 = x3^0 propagated equality oldx7^post55 = oldx7^0 propagated equality x1^post55 = x1^0 propagated equality oldx8^post55 = oldx8^0 propagated equality x2^post55 = x2^0 propagated equality oldx4^post55 = oldx4^0 propagated equality oldx0^post55 = oldx0^0 propagated equality oldx6^post55 = oldx6^0 propagated equality oldx1^post55 = oldx1^0 propagated equality oldx2^post55 = oldx2^0 propagated equality oldx9^post55 = oldx9^0 propagated equality x0^post55 = x0^0 propagated equality x4^post55 = x4^0 propagated equality oldx5^post55 = oldx5^0 Simplified Guard Original rule: l30 -> l19 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l19 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l19 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l19 : T, cost: 1 Propagated Equalities Original rule: l30 -> l20 : oldx0^0'=oldx0^post56, oldx1^0'=oldx1^post56, oldx2^0'=oldx2^post56, oldx3^0'=oldx3^post56, oldx4^0'=oldx4^post56, oldx5^0'=oldx5^post56, oldx6^0'=oldx6^post56, oldx7^0'=oldx7^post56, oldx8^0'=oldx8^post56, oldx9^0'=oldx9^post56, x0^0'=x0^post56, x1^0'=x1^post56, x2^0'=x2^post56, x3^0'=x3^post56, x4^0'=x4^post56, (oldx5^0-oldx5^post56 == 0 /\ -oldx3^post56+oldx3^0 == 0 /\ oldx9^0-oldx9^post56 == 0 /\ x1^0-x1^post56 == 0 /\ oldx1^0-oldx1^post56 == 0 /\ oldx7^0-oldx7^post56 == 0 /\ x2^0-x2^post56 == 0 /\ -x3^post56+x3^0 == 0 /\ oldx8^0-oldx8^post56 == 0 /\ -oldx0^post56+oldx0^0 == 0 /\ x4^0-x4^post56 == 0 /\ oldx4^0-oldx4^post56 == 0 /\ -oldx6^post56+oldx6^0 == 0 /\ oldx2^0-oldx2^post56 == 0 /\ -x0^post56+x0^0 == 0), cost: 1 New rule: l30 -> l20 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx5^post56 = oldx5^0 propagated equality oldx3^post56 = oldx3^0 propagated equality oldx9^post56 = oldx9^0 propagated equality x1^post56 = x1^0 propagated equality oldx1^post56 = oldx1^0 propagated equality oldx7^post56 = oldx7^0 propagated equality x2^post56 = x2^0 propagated equality x3^post56 = x3^0 propagated equality oldx8^post56 = oldx8^0 propagated equality oldx0^post56 = oldx0^0 propagated equality x4^post56 = x4^0 propagated equality oldx4^post56 = oldx4^0 propagated equality oldx6^post56 = oldx6^0 propagated equality oldx2^post56 = oldx2^0 propagated equality x0^post56 = x0^0 Simplified Guard Original rule: l30 -> l20 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l20 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l20 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l20 : T, cost: 1 Propagated Equalities Original rule: l30 -> l22 : oldx0^0'=oldx0^post57, oldx1^0'=oldx1^post57, oldx2^0'=oldx2^post57, oldx3^0'=oldx3^post57, oldx4^0'=oldx4^post57, oldx5^0'=oldx5^post57, oldx6^0'=oldx6^post57, oldx7^0'=oldx7^post57, oldx8^0'=oldx8^post57, oldx9^0'=oldx9^post57, x0^0'=x0^post57, x1^0'=x1^post57, x2^0'=x2^post57, x3^0'=x3^post57, x4^0'=x4^post57, (-oldx4^post57+oldx4^0 == 0 /\ -oldx7^post57+oldx7^0 == 0 /\ -oldx1^post57+oldx1^0 == 0 /\ -oldx8^post57+oldx8^0 == 0 /\ -x1^post57+x1^0 == 0 /\ -oldx0^post57+oldx0^0 == 0 /\ oldx9^0-oldx9^post57 == 0 /\ -oldx5^post57+oldx5^0 == 0 /\ -oldx6^post57+oldx6^0 == 0 /\ -x4^post57+x4^0 == 0 /\ -oldx2^post57+oldx2^0 == 0 /\ x3^0-x3^post57 == 0 /\ x2^0-x2^post57 == 0 /\ -oldx3^post57+oldx3^0 == 0 /\ -x0^post57+x0^0 == 0), cost: 1 New rule: l30 -> l22 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx4^post57 = oldx4^0 propagated equality oldx7^post57 = oldx7^0 propagated equality oldx1^post57 = oldx1^0 propagated equality oldx8^post57 = oldx8^0 propagated equality x1^post57 = x1^0 propagated equality oldx0^post57 = oldx0^0 propagated equality oldx9^post57 = oldx9^0 propagated equality oldx5^post57 = oldx5^0 propagated equality oldx6^post57 = oldx6^0 propagated equality x4^post57 = x4^0 propagated equality oldx2^post57 = oldx2^0 propagated equality x3^post57 = x3^0 propagated equality x2^post57 = x2^0 propagated equality oldx3^post57 = oldx3^0 propagated equality x0^post57 = x0^0 Simplified Guard Original rule: l30 -> l22 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l22 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l22 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l22 : T, cost: 1 Propagated Equalities Original rule: l30 -> l24 : oldx0^0'=oldx0^post58, oldx1^0'=oldx1^post58, oldx2^0'=oldx2^post58, oldx3^0'=oldx3^post58, oldx4^0'=oldx4^post58, oldx5^0'=oldx5^post58, oldx6^0'=oldx6^post58, oldx7^0'=oldx7^post58, oldx8^0'=oldx8^post58, oldx9^0'=oldx9^post58, x0^0'=x0^post58, x1^0'=x1^post58, x2^0'=x2^post58, x3^0'=x3^post58, x4^0'=x4^post58, (oldx4^0-oldx4^post58 == 0 /\ -oldx7^post58+oldx7^0 == 0 /\ -x4^post58+x4^0 == 0 /\ -oldx6^post58+oldx6^0 == 0 /\ -x1^post58+x1^0 == 0 /\ -oldx8^post58+oldx8^0 == 0 /\ oldx9^0-oldx9^post58 == 0 /\ -oldx0^post58+oldx0^0 == 0 /\ -oldx5^post58+oldx5^0 == 0 /\ oldx1^0-oldx1^post58 == 0 /\ -oldx2^post58+oldx2^0 == 0 /\ -x0^post58+x0^0 == 0 /\ -oldx3^post58+oldx3^0 == 0 /\ x3^0-x3^post58 == 0 /\ x2^0-x2^post58 == 0), cost: 1 New rule: l30 -> l24 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx4^post58 = oldx4^0 propagated equality oldx7^post58 = oldx7^0 propagated equality x4^post58 = x4^0 propagated equality oldx6^post58 = oldx6^0 propagated equality x1^post58 = x1^0 propagated equality oldx8^post58 = oldx8^0 propagated equality oldx9^post58 = oldx9^0 propagated equality oldx0^post58 = oldx0^0 propagated equality oldx5^post58 = oldx5^0 propagated equality oldx1^post58 = oldx1^0 propagated equality oldx2^post58 = oldx2^0 propagated equality x0^post58 = x0^0 propagated equality oldx3^post58 = oldx3^0 propagated equality x3^post58 = x3^0 propagated equality x2^post58 = x2^0 Simplified Guard Original rule: l30 -> l24 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l24 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l24 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l24 : T, cost: 1 Propagated Equalities Original rule: l30 -> l23 : oldx0^0'=oldx0^post59, oldx1^0'=oldx1^post59, oldx2^0'=oldx2^post59, oldx3^0'=oldx3^post59, oldx4^0'=oldx4^post59, oldx5^0'=oldx5^post59, oldx6^0'=oldx6^post59, oldx7^0'=oldx7^post59, oldx8^0'=oldx8^post59, oldx9^0'=oldx9^post59, x0^0'=x0^post59, x1^0'=x1^post59, x2^0'=x2^post59, x3^0'=x3^post59, x4^0'=x4^post59, (x2^0-x2^post59 == 0 /\ -oldx3^post59+oldx3^0 == 0 /\ -oldx6^post59+oldx6^0 == 0 /\ -x3^post59+x3^0 == 0 /\ oldx4^0-oldx4^post59 == 0 /\ -oldx5^post59+oldx5^0 == 0 /\ x4^0-x4^post59 == 0 /\ -x1^post59+x1^0 == 0 /\ -oldx8^post59+oldx8^0 == 0 /\ oldx7^0-oldx7^post59 == 0 /\ -oldx9^post59+oldx9^0 == 0 /\ -oldx2^post59+oldx2^0 == 0 /\ oldx1^0-oldx1^post59 == 0 /\ -x0^post59+x0^0 == 0 /\ -oldx0^post59+oldx0^0 == 0), cost: 1 New rule: l30 -> l23 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality x2^post59 = x2^0 propagated equality oldx3^post59 = oldx3^0 propagated equality oldx6^post59 = oldx6^0 propagated equality x3^post59 = x3^0 propagated equality oldx4^post59 = oldx4^0 propagated equality oldx5^post59 = oldx5^0 propagated equality x4^post59 = x4^0 propagated equality x1^post59 = x1^0 propagated equality oldx8^post59 = oldx8^0 propagated equality oldx7^post59 = oldx7^0 propagated equality oldx9^post59 = oldx9^0 propagated equality oldx2^post59 = oldx2^0 propagated equality oldx1^post59 = oldx1^0 propagated equality x0^post59 = x0^0 propagated equality oldx0^post59 = oldx0^0 Simplified Guard Original rule: l30 -> l23 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l23 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l23 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l23 : T, cost: 1 Propagated Equalities Original rule: l30 -> l26 : oldx0^0'=oldx0^post60, oldx1^0'=oldx1^post60, oldx2^0'=oldx2^post60, oldx3^0'=oldx3^post60, oldx4^0'=oldx4^post60, oldx5^0'=oldx5^post60, oldx6^0'=oldx6^post60, oldx7^0'=oldx7^post60, oldx8^0'=oldx8^post60, oldx9^0'=oldx9^post60, x0^0'=x0^post60, x1^0'=x1^post60, x2^0'=x2^post60, x3^0'=x3^post60, x4^0'=x4^post60, (-oldx3^post60+oldx3^0 == 0 /\ oldx7^0-oldx7^post60 == 0 /\ -oldx6^post60+oldx6^0 == 0 /\ oldx9^0-oldx9^post60 == 0 /\ oldx1^0-oldx1^post60 == 0 /\ -x1^post60+x1^0 == 0 /\ oldx8^0-oldx8^post60 == 0 /\ -x3^post60+x3^0 == 0 /\ x2^0-x2^post60 == 0 /\ x4^0-x4^post60 == 0 /\ oldx4^0-oldx4^post60 == 0 /\ -x0^post60+x0^0 == 0 /\ oldx5^0-oldx5^post60 == 0 /\ oldx2^0-oldx2^post60 == 0 /\ -oldx0^post60+oldx0^0 == 0), cost: 1 New rule: l30 -> l26 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx3^post60 = oldx3^0 propagated equality oldx7^post60 = oldx7^0 propagated equality oldx6^post60 = oldx6^0 propagated equality oldx9^post60 = oldx9^0 propagated equality oldx1^post60 = oldx1^0 propagated equality x1^post60 = x1^0 propagated equality oldx8^post60 = oldx8^0 propagated equality x3^post60 = x3^0 propagated equality x2^post60 = x2^0 propagated equality x4^post60 = x4^0 propagated equality oldx4^post60 = oldx4^0 propagated equality x0^post60 = x0^0 propagated equality oldx5^post60 = oldx5^0 propagated equality oldx2^post60 = oldx2^0 propagated equality oldx0^post60 = oldx0^0 Simplified Guard Original rule: l30 -> l26 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l26 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l26 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l26 : T, cost: 1 Propagated Equalities Original rule: l30 -> l25 : oldx0^0'=oldx0^post61, oldx1^0'=oldx1^post61, oldx2^0'=oldx2^post61, oldx3^0'=oldx3^post61, oldx4^0'=oldx4^post61, oldx5^0'=oldx5^post61, oldx6^0'=oldx6^post61, oldx7^0'=oldx7^post61, oldx8^0'=oldx8^post61, oldx9^0'=oldx9^post61, x0^0'=x0^post61, x1^0'=x1^post61, x2^0'=x2^post61, x3^0'=x3^post61, x4^0'=x4^post61, (-oldx9^post61+oldx9^0 == 0 /\ oldx7^0-oldx7^post61 == 0 /\ -oldx1^post61+oldx1^0 == 0 /\ -oldx6^post61+oldx6^0 == 0 /\ -x1^post61+x1^0 == 0 /\ -oldx5^post61+oldx5^0 == 0 /\ -oldx4^post61+oldx4^0 == 0 /\ -oldx0^post61+oldx0^0 == 0 /\ -x0^post61+x0^0 == 0 /\ -oldx2^post61+oldx2^0 == 0 /\ -x4^post61+x4^0 == 0 /\ -oldx8^post61+oldx8^0 == 0 /\ x3^0-x3^post61 == 0 /\ -oldx3^post61+oldx3^0 == 0 /\ x2^0-x2^post61 == 0), cost: 1 New rule: l30 -> l25 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx9^post61 = oldx9^0 propagated equality oldx7^post61 = oldx7^0 propagated equality oldx1^post61 = oldx1^0 propagated equality oldx6^post61 = oldx6^0 propagated equality x1^post61 = x1^0 propagated equality oldx5^post61 = oldx5^0 propagated equality oldx4^post61 = oldx4^0 propagated equality oldx0^post61 = oldx0^0 propagated equality x0^post61 = x0^0 propagated equality oldx2^post61 = oldx2^0 propagated equality x4^post61 = x4^0 propagated equality oldx8^post61 = oldx8^0 propagated equality x3^post61 = x3^0 propagated equality oldx3^post61 = oldx3^0 propagated equality x2^post61 = x2^0 Simplified Guard Original rule: l30 -> l25 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l25 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l25 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l25 : T, cost: 1 Propagated Equalities Original rule: l30 -> l27 : oldx0^0'=oldx0^post62, oldx1^0'=oldx1^post62, oldx2^0'=oldx2^post62, oldx3^0'=oldx3^post62, oldx4^0'=oldx4^post62, oldx5^0'=oldx5^post62, oldx6^0'=oldx6^post62, oldx7^0'=oldx7^post62, oldx8^0'=oldx8^post62, oldx9^0'=oldx9^post62, x0^0'=x0^post62, x1^0'=x1^post62, x2^0'=x2^post62, x3^0'=x3^post62, x4^0'=x4^post62, (-oldx9^post62+oldx9^0 == 0 /\ -oldx3^post62+oldx3^0 == 0 /\ -x1^post62+x1^0 == 0 /\ -x4^post62+x4^0 == 0 /\ oldx4^0-oldx4^post62 == 0 /\ -oldx6^post62+oldx6^0 == 0 /\ -oldx5^post62+oldx5^0 == 0 /\ -x0^post62+x0^0 == 0 /\ x2^0-x2^post62 == 0 /\ -oldx0^post62+oldx0^0 == 0 /\ oldx7^0-oldx7^post62 == 0 /\ oldx1^0-oldx1^post62 == 0 /\ -oldx2^post62+oldx2^0 == 0 /\ -oldx8^post62+oldx8^0 == 0 /\ x3^0-x3^post62 == 0), cost: 1 New rule: l30 -> l27 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx9^post62 = oldx9^0 propagated equality oldx3^post62 = oldx3^0 propagated equality x1^post62 = x1^0 propagated equality x4^post62 = x4^0 propagated equality oldx4^post62 = oldx4^0 propagated equality oldx6^post62 = oldx6^0 propagated equality oldx5^post62 = oldx5^0 propagated equality x0^post62 = x0^0 propagated equality x2^post62 = x2^0 propagated equality oldx0^post62 = oldx0^0 propagated equality oldx7^post62 = oldx7^0 propagated equality oldx1^post62 = oldx1^0 propagated equality oldx2^post62 = oldx2^0 propagated equality oldx8^post62 = oldx8^0 propagated equality x3^post62 = x3^0 Simplified Guard Original rule: l30 -> l27 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l27 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l27 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l27 : T, cost: 1 Propagated Equalities Original rule: l30 -> l29 : oldx0^0'=oldx0^post63, oldx1^0'=oldx1^post63, oldx2^0'=oldx2^post63, oldx3^0'=oldx3^post63, oldx4^0'=oldx4^post63, oldx5^0'=oldx5^post63, oldx6^0'=oldx6^post63, oldx7^0'=oldx7^post63, oldx8^0'=oldx8^post63, oldx9^0'=oldx9^post63, x0^0'=x0^post63, x1^0'=x1^post63, x2^0'=x2^post63, x3^0'=x3^post63, x4^0'=x4^post63, (x2^0-x2^post63 == 0 /\ -oldx6^post63+oldx6^0 == 0 /\ -x3^post63+x3^0 == 0 /\ oldx4^0-oldx4^post63 == 0 /\ -oldx9^post63+oldx9^0 == 0 /\ -oldx3^post63+oldx3^0 == 0 /\ -x0^post63+x0^0 == 0 /\ x4^0-x4^post63 == 0 /\ -oldx5^post63+oldx5^0 == 0 /\ oldx7^0-oldx7^post63 == 0 /\ -oldx2^post63+oldx2^0 == 0 /\ oldx1^0-oldx1^post63 == 0 /\ -oldx0^post63+oldx0^0 == 0 /\ x1^0-x1^post63 == 0 /\ -oldx8^post63+oldx8^0 == 0), cost: 1 New rule: l30 -> l29 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality x2^post63 = x2^0 propagated equality oldx6^post63 = oldx6^0 propagated equality x3^post63 = x3^0 propagated equality oldx4^post63 = oldx4^0 propagated equality oldx9^post63 = oldx9^0 propagated equality oldx3^post63 = oldx3^0 propagated equality x0^post63 = x0^0 propagated equality x4^post63 = x4^0 propagated equality oldx5^post63 = oldx5^0 propagated equality oldx7^post63 = oldx7^0 propagated equality oldx2^post63 = oldx2^0 propagated equality oldx1^post63 = oldx1^0 propagated equality oldx0^post63 = oldx0^0 propagated equality x1^post63 = x1^0 propagated equality oldx8^post63 = oldx8^0 Simplified Guard Original rule: l30 -> l29 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l29 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l29 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l29 : T, cost: 1 Propagated Equalities Original rule: l30 -> l28 : oldx0^0'=oldx0^post64, oldx1^0'=oldx1^post64, oldx2^0'=oldx2^post64, oldx3^0'=oldx3^post64, oldx4^0'=oldx4^post64, oldx5^0'=oldx5^post64, oldx6^0'=oldx6^post64, oldx7^0'=oldx7^post64, oldx8^0'=oldx8^post64, oldx9^0'=oldx9^post64, x0^0'=x0^post64, x1^0'=x1^post64, x2^0'=x2^post64, x3^0'=x3^post64, x4^0'=x4^post64, (oldx7^0-oldx7^post64 == 0 /\ -oldx6^post64+oldx6^0 == 0 /\ -oldx9^post64+oldx9^0 == 0 /\ -oldx3^post64+oldx3^0 == 0 /\ oldx1^0-oldx1^post64 == 0 /\ x2^0-x2^post64 == 0 /\ -x3^post64+x3^0 == 0 /\ -x0^post64+x0^0 == 0 /\ x1^0-x1^post64 == 0 /\ oldx8^0-oldx8^post64 == 0 /\ oldx4^0-oldx4^post64 == 0 /\ x4^0-x4^post64 == 0 /\ oldx5^0-oldx5^post64 == 0 /\ -oldx0^post64+oldx0^0 == 0 /\ oldx2^0-oldx2^post64 == 0), cost: 1 New rule: l30 -> l28 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx7^post64 = oldx7^0 propagated equality oldx6^post64 = oldx6^0 propagated equality oldx9^post64 = oldx9^0 propagated equality oldx3^post64 = oldx3^0 propagated equality oldx1^post64 = oldx1^0 propagated equality x2^post64 = x2^0 propagated equality x3^post64 = x3^0 propagated equality x0^post64 = x0^0 propagated equality x1^post64 = x1^0 propagated equality oldx8^post64 = oldx8^0 propagated equality oldx4^post64 = oldx4^0 propagated equality x4^post64 = x4^0 propagated equality oldx5^post64 = oldx5^0 propagated equality oldx0^post64 = oldx0^0 propagated equality oldx2^post64 = oldx2^0 Simplified Guard Original rule: l30 -> l28 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l28 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l28 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l28 : T, cost: 1 Propagated Equalities Original rule: l30 -> l1 : oldx0^0'=oldx0^post65, oldx1^0'=oldx1^post65, oldx2^0'=oldx2^post65, oldx3^0'=oldx3^post65, oldx4^0'=oldx4^post65, oldx5^0'=oldx5^post65, oldx6^0'=oldx6^post65, oldx7^0'=oldx7^post65, oldx8^0'=oldx8^post65, oldx9^0'=oldx9^post65, x0^0'=x0^post65, x1^0'=x1^post65, x2^0'=x2^post65, x3^0'=x3^post65, x4^0'=x4^post65, (-oldx3^post65+oldx3^0 == 0 /\ oldx7^0-oldx7^post65 == 0 /\ -oldx6^post65+oldx6^0 == 0 /\ -oldx9^post65+oldx9^0 == 0 /\ -x4^post65+x4^0 == 0 /\ -x0^post65+x0^0 == 0 /\ -oldx5^post65+oldx5^0 == 0 /\ -oldx4^post65+oldx4^0 == 0 /\ x2^0-x2^post65 == 0 /\ -oldx2^post65+oldx2^0 == 0 /\ -x1^post65+x1^0 == 0 /\ -oldx1^post65+oldx1^0 == 0 /\ -oldx8^post65+oldx8^0 == 0 /\ -x3^post65+x3^0 == 0 /\ -oldx0^post65+oldx0^0 == 0), cost: 1 New rule: l30 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx3^post65 = oldx3^0 propagated equality oldx7^post65 = oldx7^0 propagated equality oldx6^post65 = oldx6^0 propagated equality oldx9^post65 = oldx9^0 propagated equality x4^post65 = x4^0 propagated equality x0^post65 = x0^0 propagated equality oldx5^post65 = oldx5^0 propagated equality oldx4^post65 = oldx4^0 propagated equality x2^post65 = x2^0 propagated equality oldx2^post65 = oldx2^0 propagated equality x1^post65 = x1^0 propagated equality oldx1^post65 = oldx1^0 propagated equality oldx8^post65 = oldx8^0 propagated equality x3^post65 = x3^0 propagated equality oldx0^post65 = oldx0^0 Simplified Guard Original rule: l30 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l1 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l1 : T, cost: 1 Propagated Equalities Original rule: l30 -> l10 : oldx0^0'=oldx0^post66, oldx1^0'=oldx1^post66, oldx2^0'=oldx2^post66, oldx3^0'=oldx3^post66, oldx4^0'=oldx4^post66, oldx5^0'=oldx5^post66, oldx6^0'=oldx6^post66, oldx7^0'=oldx7^post66, oldx8^0'=oldx8^post66, oldx9^0'=oldx9^post66, x0^0'=x0^post66, x1^0'=x1^post66, x2^0'=x2^post66, x3^0'=x3^post66, x4^0'=x4^post66, (-oldx3^post66+oldx3^0 == 0 /\ -oldx6^post66+oldx6^0 == 0 /\ x2^0-x2^post66 == 0 /\ -oldx9^post66+oldx9^0 == 0 /\ oldx4^0-oldx4^post66 == 0 /\ -x0^post66+x0^0 == 0 /\ -oldx5^post66+oldx5^0 == 0 /\ x4^0-x4^post66 == 0 /\ oldx7^0-oldx7^post66 == 0 /\ -oldx2^post66+oldx2^0 == 0 /\ -x3^post66+x3^0 == 0 /\ oldx1^0-oldx1^post66 == 0 /\ -oldx8^post66+oldx8^0 == 0 /\ x1^0-x1^post66 == 0 /\ -oldx0^post66+oldx0^0 == 0), cost: 1 New rule: l30 -> l10 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx3^post66 = oldx3^0 propagated equality oldx6^post66 = oldx6^0 propagated equality x2^post66 = x2^0 propagated equality oldx9^post66 = oldx9^0 propagated equality oldx4^post66 = oldx4^0 propagated equality x0^post66 = x0^0 propagated equality oldx5^post66 = oldx5^0 propagated equality x4^post66 = x4^0 propagated equality oldx7^post66 = oldx7^0 propagated equality oldx2^post66 = oldx2^0 propagated equality x3^post66 = x3^0 propagated equality oldx1^post66 = oldx1^0 propagated equality oldx8^post66 = oldx8^0 propagated equality x1^post66 = x1^0 propagated equality oldx0^post66 = oldx0^0 Simplified Guard Original rule: l30 -> l10 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l30 -> l10 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l30 -> l10 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l30 -> l10 : T, cost: 1 Propagated Equalities Original rule: l31 -> l30 : oldx0^0'=oldx0^post67, oldx1^0'=oldx1^post67, oldx2^0'=oldx2^post67, oldx3^0'=oldx3^post67, oldx4^0'=oldx4^post67, oldx5^0'=oldx5^post67, oldx6^0'=oldx6^post67, oldx7^0'=oldx7^post67, oldx8^0'=oldx8^post67, oldx9^0'=oldx9^post67, x0^0'=x0^post67, x1^0'=x1^post67, x2^0'=x2^post67, x3^0'=x3^post67, x4^0'=x4^post67, (oldx9^0-oldx9^post67 == 0 /\ oldx5^0-oldx5^post67 == 0 /\ oldx7^0-oldx7^post67 == 0 /\ -x3^post67+x3^0 == 0 /\ -x1^post67+x1^0 == 0 /\ oldx4^0-oldx4^post67 == 0 /\ -oldx0^post67+oldx0^0 == 0 /\ x2^0-x2^post67 == 0 /\ oldx1^0-oldx1^post67 == 0 /\ -oldx3^post67+oldx3^0 == 0 /\ oldx8^0-oldx8^post67 == 0 /\ oldx2^0-oldx2^post67 == 0 /\ -oldx6^post67+oldx6^0 == 0 /\ x4^0-x4^post67 == 0 /\ -x0^post67+x0^0 == 0), cost: 1 New rule: l31 -> l30 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 propagated equality oldx9^post67 = oldx9^0 propagated equality oldx5^post67 = oldx5^0 propagated equality oldx7^post67 = oldx7^0 propagated equality x3^post67 = x3^0 propagated equality x1^post67 = x1^0 propagated equality oldx4^post67 = oldx4^0 propagated equality oldx0^post67 = oldx0^0 propagated equality x2^post67 = x2^0 propagated equality oldx1^post67 = oldx1^0 propagated equality oldx3^post67 = oldx3^0 propagated equality oldx8^post67 = oldx8^0 propagated equality oldx2^post67 = oldx2^0 propagated equality oldx6^post67 = oldx6^0 propagated equality x4^post67 = x4^0 propagated equality x0^post67 = x0^0 Simplified Guard Original rule: l31 -> l30 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, 0 == 0, cost: 1 New rule: l31 -> l30 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 Removed Trivial Updates Original rule: l31 -> l30 : oldx0^0'=oldx0^0, oldx1^0'=oldx1^0, oldx2^0'=oldx2^0, oldx3^0'=oldx3^0, oldx4^0'=oldx4^0, oldx5^0'=oldx5^0, oldx6^0'=oldx6^0, oldx7^0'=oldx7^0, oldx8^0'=oldx8^0, oldx9^0'=oldx9^0, x0^0'=x0^0, x1^0'=x1^0, x2^0'=x2^0, x3^0'=x3^0, x4^0'=x4^0, T, cost: 1 New rule: l31 -> l30 : T, cost: 1 Step with 133 Trace 133[T] Blocked [{}, {}] Step with 102 Trace 133[T], 102[T] Blocked [{}, {}, {}] Step with 80 Trace 133[T], 102[T], 80[T] Blocked [{}, {}, {}, {}] Step with 78 Trace 133[T], 102[T], 80[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {}, {}, {}, {}] Step with 74 Trace 133[T], 102[T], 80[T], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {}, {}, {}, {}, {}] Backtrack Trace 133[T], 102[T], 80[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {}, {}, {}, {74[T]}] Backtrack Trace 133[T], 102[T], 80[T] Blocked [{}, {}, {}, {78[T]}] Step with 79 Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {}, {}, {78[T]}, {}] Step with 77 Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {}, {}, {78[T]}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, 1+x1^0-x0^0 <= 0, cost: 1 New rule: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 -1-x1^0+x0^0 >= 0 [0]: montonic decrease yields -n-x1^0+x0^0 >= 0 -1-x1^0+x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1-x1^0+x0^0 >= 0) Replacement map: {-1-x1^0+x0^0 >= 0 -> -n-x1^0+x0^0 >= 0} Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {}, {}, {78[T]}, {134[T]}] Step with 78 Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {}, {}, {78[T]}, {134[T]}, {}] Step with 74 Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {}, {}, {78[T]}, {134[T]}, {}, {}] Backtrack Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {}, {}, {78[T]}, {134[T]}, {74[T]}] Backtrack Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {}, {}, {78[T]}, {78[T], 134[T]}] Step with 79 Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {}, {}, {78[T]}, {78[T], 134[T]}, {}] Step with 77 Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {}, {}, {78[T]}, {78[T], 134[T]}, {}, {}] Covered Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {}, {}, {78[T]}, {78[T], 134[T]}, {77[T]}] Backtrack Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {}, {}, {78[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 102[T], 80[T] Blocked [{}, {}, {}, {78[T], 134[T]}] Step with 79 Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {}, {}, {78[T], 134[T]}, {}] Step with 77 Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {}, {}, {78[T], 134[T]}, {}, {}] Covered Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {}, {}, {78[T], 134[T]}, {77[T]}] Backtrack Trace 133[T], 102[T], 80[T] Blocked [{}, {}, {}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 102[T] Blocked [{}, {}, {80[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T]}] Step with 103 Trace 133[T], 103[T] Blocked [{}, {102[T]}, {}] Step with 67 Trace 133[T], 103[T], 67[T] Blocked [{}, {102[T]}, {}, {}] Backtrack Trace 133[T], 103[T] Blocked [{}, {102[T]}, {67[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T]}] Step with 104 Trace 133[T], 104[T] Blocked [{}, {102[T], 103[T]}, {}] Step with 68 Trace 133[T], 104[T], 68[T] Blocked [{}, {102[T], 103[T]}, {}, {}] Backtrack Trace 133[T], 104[T] Blocked [{}, {102[T], 103[T]}, {68[T]}] Step with 69 Trace 133[T], 104[T], 69[T] Blocked [{}, {102[T], 103[T]}, {68[T]}, {}] Step with 72 Trace 133[T], 104[T], 69[T], 72[T] Blocked [{}, {102[T], 103[T]}, {68[T]}, {}, {}] Step with 70 Trace 133[T], 104[T], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T]}, {68[T]}, {}, {}, {}] Step with 67 Trace 133[T], 104[T], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {102[T], 103[T]}, {68[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 104[T], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T]}, {68[T]}, {}, {}, {67[T]}] Backtrack Trace 133[T], 104[T], 69[T], 72[T] Blocked [{}, {102[T], 103[T]}, {68[T]}, {}, {70[T]}] Step with 71 Trace 133[T], 104[T], 69[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T]}, {68[T]}, {}, {70[T]}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l2 -> l2 : oldx0^0'=1+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, 1-x1^0+x0^0 <= 0, cost: 1 New rule: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 -1+x1^0-x0^0 >= 0 [0]: montonic decrease yields -n2+x1^0-x0^0 >= 0 -1+x1^0-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+x1^0-x0^0 >= 0) Replacement map: {-1+x1^0-x0^0 >= 0 -> -n2+x1^0-x0^0 >= 0} Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T]}, {68[T]}, {135[T]}] Step with 68 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {102[T], 103[T]}, {68[T]}, {135[T]}, {}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T]}, {68[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {102[T], 103[T]}, {68[T]}, {68[T], 135[T]}, {}] Step with 72 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T] Blocked [{}, {102[T], 103[T]}, {68[T]}, {68[T], 135[T]}, {}, {}] Step with 71 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T]}, {68[T]}, {68[T], 135[T]}, {}, {}, {}] Covered Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T] Blocked [{}, {102[T], 103[T]}, {68[T]}, {68[T], 135[T]}, {}, {71[T]}] Step with 70 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T]}, {68[T]}, {68[T], 135[T]}, {}, {71[T]}, {}] Step with 67 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {102[T], 103[T]}, {68[T]}, {68[T], 135[T]}, {}, {71[T]}, {}, {}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T]}, {68[T]}, {68[T], 135[T]}, {}, {71[T]}, {67[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T] Blocked [{}, {102[T], 103[T]}, {68[T]}, {68[T], 135[T]}, {}, {70[T], 71[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {102[T], 103[T]}, {68[T]}, {68[T], 135[T]}, {72[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T]}, {68[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 104[T] Blocked [{}, {102[T], 103[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 104[T], 69[T] Blocked [{}, {102[T], 103[T]}, {68[T], 135[T]}, {}] Step with 72 Trace 133[T], 104[T], 69[T], 72[T] Blocked [{}, {102[T], 103[T]}, {68[T], 135[T]}, {}, {}] Step with 70 Trace 133[T], 104[T], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T]}, {68[T], 135[T]}, {}, {}, {}] Step with 67 Trace 133[T], 104[T], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {102[T], 103[T]}, {68[T], 135[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 104[T], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T]}, {68[T], 135[T]}, {}, {}, {67[T]}] Backtrack Trace 133[T], 104[T], 69[T], 72[T] Blocked [{}, {102[T], 103[T]}, {68[T], 135[T]}, {}, {70[T]}] Step with 71 Trace 133[T], 104[T], 69[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T]}, {68[T], 135[T]}, {}, {70[T]}, {}] Covered Trace 133[T], 104[T], 69[T], 72[T] Blocked [{}, {102[T], 103[T]}, {68[T], 135[T]}, {}, {70[T], 71[T]}] Backtrack Trace 133[T], 104[T], 69[T] Blocked [{}, {102[T], 103[T]}, {68[T], 135[T]}, {72[T]}] Backtrack Trace 133[T], 104[T] Blocked [{}, {102[T], 103[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T]}] Step with 105 Trace 133[T], 105[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}] Step with 71 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {}] Step with 69 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {}, {}] Step with 72 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T], 72[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l4 -> l4 : oldx0^0'=1+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, -x1^0+x0^0 <= 0, cost: 1 New rule: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 x1^0-x0^0 >= 0 [0]: montonic decrease yields 1+x1^0-n3-x0^0 >= 0 x1^0-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ x1^0-x0^0 >= 0) Replacement map: {x1^0-x0^0 >= 0 -> 1+x1^0-n3-x0^0 >= 0} Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {136[T]}] Step with 70 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {136[T]}, {}] Step with 67 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {136[T]}, {}, {}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {136[T]}, {67[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}] Step with 71 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {}] Step with 69 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {}, {}] Step with 72 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T], 72[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {}, {}, {}] Covered Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {}, {72[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {69[T]}] Step with 135 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {69[T]}, {135[T]}] Step with 68 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}, {}] Step with 72 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}, {}, {}] Covered Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}, {72[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {69[T], 135[T]}] Step with 68 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {69[T], 135[T]}, {}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 136[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 105[T] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}] Step with 71 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {}] Step with 68 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {}, {}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T]}] Step with 69 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T]}, {}] Step with 72 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T], 72[T] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T]}, {}, {}] Covered Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T]}, {72[T]}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T], 69[T]}] Step with 135 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T], 69[T]}, {135[T]}] Step with 68 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T], 69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T], 69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}] Step with 72 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {}] Covered Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T], 69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {136[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 105[T] Blocked [{}, {102[T], 103[T], 104[T]}, {71[T], 136[T]}] Step with 70 Trace 133[T], 105[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {71[T], 136[T]}, {}] Step with 67 Trace 133[T], 105[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {102[T], 103[T], 104[T]}, {71[T], 136[T]}, {}, {}] Backtrack Trace 133[T], 105[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T]}, {71[T], 136[T]}, {67[T]}] Backtrack Trace 133[T], 105[T] Blocked [{}, {102[T], 103[T], 104[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}] Step with 106 Trace 133[T], 106[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}] Step with 72 Trace 133[T], 106[T], 72[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {}] Step with 70 Trace 133[T], 106[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {}, {}] Step with 67 Trace 133[T], 106[T], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 106[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {}, {67[T]}] Backtrack Trace 133[T], 106[T], 72[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {70[T]}] Step with 71 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {70[T]}, {}] Step with 69 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {70[T]}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l3 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, -x1^0+x0^0 <= 0, cost: 1 New rule: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 x1^0-x0^0 >= 0 [0]: montonic decrease yields 1+x1^0-n4-x0^0 >= 0 x1^0-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ x1^0-x0^0 >= 0) Replacement map: {x1^0-x0^0 >= 0 -> 1+x1^0-n4-x0^0 >= 0} Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}] Step with 72 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}] Step with 71 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}, {}] Step with 69 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}, {}, {}] Covered Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}, {69[T]}] Step with 135 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}, {69[T]}, {135[T]}] Step with 68 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}, {69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}, {69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}, {69[T]}, {68[T], 135[T]}, {}] Covered Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}, {69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}, {69[T], 135[T]}] Step with 68 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}, {69[T], 135[T]}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}] Step with 136 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {136[T]}] Step with 70 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {136[T]}, {}] Step with 67 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {136[T]}, {}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {136[T]}, {67[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}] Step with 71 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}, {}] Step with 68 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}, {}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}, {68[T]}] Step with 69 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}, {68[T]}, {}] Covered Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}] Step with 135 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {135[T]}] Step with 68 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}] Covered Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T], 136[T]}] Step with 70 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T], 136[T]}, {}] Step with 67 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T], 136[T]}, {}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {71[T], 136[T]}, {67[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {137[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {}, {72[T], 137[T]}] Backtrack Trace 133[T], 106[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}] Step with 72 Trace 133[T], 106[T], 72[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {}] Step with 70 Trace 133[T], 106[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {}, {}] Step with 67 Trace 133[T], 106[T], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {}, {}, {}] Backtrack Trace 133[T], 106[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {}, {67[T]}] Backtrack Trace 133[T], 106[T], 72[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}] Step with 71 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}, {}] Step with 69 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}, {}, {}] Covered Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}, {69[T]}] Step with 135 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}, {69[T]}, {135[T]}] Step with 68 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}, {69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}, {69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}, {69[T]}, {68[T], 135[T]}, {}] Covered Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}, {69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}, {69[T], 135[T]}] Step with 68 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}, {69[T], 135[T]}, {}] Backtrack Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 72[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}] Step with 136 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}] Step with 70 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {}] Step with 67 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {}, {}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {67[T]}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}] Step with 71 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}] Step with 68 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}, {}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T]}] Step with 69 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T]}, {}] Covered Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}] Step with 135 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {135[T]}] Step with 68 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}] Covered Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 106[T], 72[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {137[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 106[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T]}, {72[T], 137[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T]}] Step with 107 Trace 133[T], 107[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T]}, {}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T]}] Step with 108 Trace 133[T], 108[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T]}, {}] Step with 73 Trace 133[T], 108[T], 73[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T]}, {}, {}] Backtrack Trace 133[T], 108[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T]}, {73[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T]}] Step with 109 Trace 133[T], 109[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T]}, {}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T]}] Step with 110 Trace 133[T], 110[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T]}, {}] Step with 74 Trace 133[T], 110[T], 74[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T]}, {}, {}] Backtrack Trace 133[T], 110[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T]}, {74[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}] Step with 111 Trace 133[T], 111[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {}] Step with 75 Trace 133[T], 111[T], 75[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {}, {}] Backtrack Trace 133[T], 111[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}] Step with 76 Trace 133[T], 111[T], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {}] Step with 101 Trace 133[T], 111[T], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {}, {}] Step with 87 Trace 133[T], 111[T], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {}, {}, {}] Step with 73 Trace 133[T], 111[T], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 111[T], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {}, {}, {73[T]}] Backtrack Trace 133[T], 111[T], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {}, {87[T]}] Step with 88 Trace 133[T], 111[T], 76[T], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {}, {87[T]}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l9 -> l9 : oldx0^0'=-1+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-1+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, 1+x1^0-x0^0 <= 0, cost: 1 New rule: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 -1-x1^0+x0^0 >= 0 [0]: montonic decrease yields -x1^0-n5+x0^0 >= 0 -1-x1^0+x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1-x1^0+x0^0 >= 0) Replacement map: {-1-x1^0+x0^0 >= 0 -> -x1^0-n5+x0^0 >= 0} Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {138[T]}] Step with 75 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 75[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {138[T]}, {}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {75[T], 138[T]}] Step with 76 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {75[T], 138[T]}, {}] Step with 101 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {75[T], 138[T]}, {}, {}] Step with 88 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {75[T], 138[T]}, {}, {}, {}] Covered Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {75[T], 138[T]}, {}, {88[T]}] Step with 87 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {75[T], 138[T]}, {}, {88[T]}, {}] Step with 73 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {75[T], 138[T]}, {}, {88[T]}, {}, {}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {75[T], 138[T]}, {}, {88[T]}, {73[T]}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {75[T], 138[T]}, {}, {87[T], 88[T]}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {75[T], 138[T]}, {101[T]}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 111[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T], 138[T]}] Step with 76 Trace 133[T], 111[T], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T], 138[T]}, {}] Step with 101 Trace 133[T], 111[T], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T], 138[T]}, {}, {}] Step with 87 Trace 133[T], 111[T], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T], 138[T]}, {}, {}, {}] Step with 73 Trace 133[T], 111[T], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T], 138[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 111[T], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T], 138[T]}, {}, {}, {73[T]}] Backtrack Trace 133[T], 111[T], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T], 138[T]}, {}, {87[T]}] Step with 88 Trace 133[T], 111[T], 76[T], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T], 138[T]}, {}, {87[T]}, {}] Covered Trace 133[T], 111[T], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T], 138[T]}, {}, {87[T], 88[T]}] Backtrack Trace 133[T], 111[T], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T], 138[T]}, {101[T]}] Backtrack Trace 133[T], 111[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}] Step with 112 Trace 133[T], 112[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}] Step with 77 Trace 133[T], 112[T], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {}] Step with 79 Trace 133[T], 112[T], 77[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=1+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=1+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 2+x1^0-x0^0 <= 0, cost: 1 New rule: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 -2-x1^0+x0^0 >= 0 [0]: montonic decrease yields -1-n6-x1^0+x0^0 >= 0 -2-x1^0+x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -2-x1^0+x0^0 >= 0) Replacement map: {-2-x1^0+x0^0 >= 0 -> -1-n6-x1^0+x0^0 >= 0} Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}] Step with 77 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {}] Step with 79 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {}, {}] Covered Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T]}] Step with 134 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T]}, {134[T]}] Step with 78 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T]}, {134[T]}, {}] Step with 74 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T]}, {134[T]}, {}, {}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T]}, {134[T]}, {74[T]}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T]}, {78[T], 134[T]}] Step with 79 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T]}, {78[T], 134[T]}, {}] Covered Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T], 134[T]}] Step with 78 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T], 134[T]}, {}] Step with 74 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T], 134[T]}, {}, {}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {79[T], 134[T]}, {74[T]}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {139[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {}, {77[T], 139[T]}] Backtrack Trace 133[T], 112[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}] Step with 77 Trace 133[T], 112[T], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {}] Step with 78 Trace 133[T], 112[T], 77[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {}, {}] Step with 74 Trace 133[T], 112[T], 77[T], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {}, {}, {}] Backtrack Trace 133[T], 112[T], 77[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {}, {74[T]}] Backtrack Trace 133[T], 112[T], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {78[T]}] Step with 79 Trace 133[T], 112[T], 77[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {78[T]}, {}] Covered Trace 133[T], 112[T], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {78[T], 79[T]}] Step with 134 Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {78[T], 79[T]}, {134[T]}] Step with 78 Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {78[T], 79[T]}, {134[T]}, {}] Step with 74 Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {78[T], 79[T]}, {134[T]}, {}, {}] Backtrack Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {78[T], 79[T]}, {134[T]}, {74[T]}] Backtrack Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {78[T], 79[T]}, {78[T], 134[T]}] Step with 79 Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {78[T], 79[T]}, {78[T], 134[T]}, {}] Covered Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {78[T], 79[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 112[T], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {139[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 112[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T]}, {77[T], 139[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}] Step with 113 Trace 133[T], 113[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {}] Step with 79 Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {}, {}] Step with 77 Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {}, {}, {}] Covered Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {}, {77[T]}] Step with 139 Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {}, {77[T]}, {139[T]}] Step with 77 Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {}, {77[T]}, {139[T]}, {}] Covered Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {}, {77[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {}, {77[T], 139[T]}] Backtrack Trace 133[T], 113[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}] Step with 134 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {134[T]}] Step with 78 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {134[T]}, {}] Step with 74 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {134[T]}, {}, {}] Backtrack Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {134[T]}, {74[T]}] Backtrack Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {78[T], 134[T]}] Step with 79 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {78[T], 134[T]}, {}] Step with 77 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {78[T], 134[T]}, {}, {}] Covered Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {78[T], 134[T]}, {77[T]}] Step with 139 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {78[T], 134[T]}, {77[T]}, {139[T]}] Step with 77 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {78[T], 134[T]}, {77[T]}, {139[T]}, {}] Covered Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {78[T], 134[T]}, {77[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {78[T], 134[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 113[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T], 134[T]}] Step with 78 Trace 133[T], 113[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T], 134[T]}, {}] Step with 74 Trace 133[T], 113[T], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T], 134[T]}, {}, {}] Backtrack Trace 133[T], 113[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {79[T], 134[T]}, {74[T]}] Backtrack Trace 133[T], 113[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}] Step with 114 Trace 133[T], 114[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}] Step with 80 Trace 133[T], 114[T], 80[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {}] Step with 78 Trace 133[T], 114[T], 80[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {}, {}] Step with 74 Trace 133[T], 114[T], 80[T], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 114[T], 80[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {}, {74[T]}] Backtrack Trace 133[T], 114[T], 80[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T]}] Step with 79 Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T]}, {}] Step with 77 Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T]}, {}, {}] Covered Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T]}, {77[T]}] Step with 139 Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T]}, {77[T]}, {139[T]}] Step with 77 Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T]}, {77[T]}, {139[T]}, {}] Covered Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T]}, {77[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 114[T], 80[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}] Step with 134 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {134[T]}] Step with 78 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {134[T]}, {}] Step with 74 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {134[T]}, {}, {}] Backtrack Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {134[T]}, {74[T]}] Backtrack Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}] Step with 79 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {}] Step with 77 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {}, {}] Covered Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}] Step with 139 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}, {139[T]}] Step with 77 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}, {139[T]}, {}] Covered Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 114[T], 80[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 114[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T]}, {80[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T]}] Step with 115 Trace 133[T], 115[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T]}, {}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T]}] Step with 116 Trace 133[T], 116[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T]}, {}] Step with 81 Trace 133[T], 116[T], 81[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T]}, {}, {}] Backtrack Trace 133[T], 116[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T]}, {81[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}] Step with 117 Trace 133[T], 117[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {}] Step with 82 Trace 133[T], 117[T], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {}, {}] Backtrack Trace 133[T], 117[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}] Step with 83 Trace 133[T], 117[T], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {}] Step with 86 Trace 133[T], 117[T], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {}, {}] Step with 84 Trace 133[T], 117[T], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {}, {}, {}] Step with 81 Trace 133[T], 117[T], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 117[T], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {}, {}, {81[T]}] Backtrack Trace 133[T], 117[T], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {}, {84[T]}] Step with 85 Trace 133[T], 117[T], 83[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {}, {84[T]}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 140: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l16 -> l16 : oldx0^0'=1+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=1+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, 1-x1^0+x0^0 <= 0, cost: 1 New rule: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 -1+x1^0-x0^0 >= 0 [0]: montonic decrease yields -n11+x1^0-x0^0 >= 0 -1+x1^0-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+x1^0-x0^0 >= 0) Replacement map: {-1+x1^0-x0^0 >= 0 -> -n11+x1^0-x0^0 >= 0} Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {140[T]}] Step with 82 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {140[T]}, {}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {82[T], 140[T]}, {}] Step with 86 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {82[T], 140[T]}, {}, {}] Step with 85 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {82[T], 140[T]}, {}, {}, {}] Covered Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {82[T], 140[T]}, {}, {85[T]}] Step with 84 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {82[T], 140[T]}, {}, {85[T]}, {}] Step with 81 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {82[T], 140[T]}, {}, {85[T]}, {}, {}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {82[T], 140[T]}, {}, {85[T]}, {81[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {82[T], 140[T]}, {}, {84[T], 85[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {82[T], 140[T]}, {86[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 117[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 117[T], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T], 140[T]}, {}] Step with 86 Trace 133[T], 117[T], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T], 140[T]}, {}, {}] Step with 84 Trace 133[T], 117[T], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T], 140[T]}, {}, {}, {}] Step with 81 Trace 133[T], 117[T], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T], 140[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 117[T], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T], 140[T]}, {}, {}, {81[T]}] Backtrack Trace 133[T], 117[T], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T], 140[T]}, {}, {84[T]}] Step with 85 Trace 133[T], 117[T], 83[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T], 140[T]}, {}, {84[T]}, {}] Covered Trace 133[T], 117[T], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T], 140[T]}, {}, {84[T], 85[T]}] Backtrack Trace 133[T], 117[T], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T], 140[T]}, {86[T]}] Backtrack Trace 133[T], 117[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}] Step with 118 Trace 133[T], 118[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}] Step with 85 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {}] Step with 83 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {}, {}] Step with 86 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 140: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 141: l18 -> l18 : oldx0^0'=n12+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=n12+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0), cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l18 -> l18 : oldx0^0'=1+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=1+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, -x1^0+x0^0 <= 0, cost: 1 New rule: l18 -> l18 : oldx0^0'=n12+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=n12+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0), cost: 1 x1^0-x0^0 >= 0 [0]: montonic decrease yields 1-n12+x1^0-x0^0 >= 0 x1^0-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ x1^0-x0^0 >= 0) Replacement map: {x1^0-x0^0 >= 0 -> 1-n12+x1^0-x0^0 >= 0} Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {141[T]}] Step with 84 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {141[T]}, {}] Step with 81 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {141[T]}, {}, {}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {141[T]}, {81[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}] Step with 85 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {}] Step with 83 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {}, {}] Step with 86 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {}, {}, {}] Covered Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {}, {86[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {83[T]}] Step with 140 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {83[T]}, {140[T]}] Step with 82 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}, {}] Step with 86 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}, {}, {}] Covered Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}, {86[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {83[T], 140[T]}] Step with 82 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {83[T], 140[T]}, {}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 141[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 118[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}] Step with 85 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {}] Step with 82 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {}, {}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T]}] Step with 83 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T]}, {}] Step with 86 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T]}, {}, {}] Covered Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T]}, {86[T]}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T], 83[T]}] Step with 140 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T], 83[T]}, {140[T]}] Step with 82 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T], 83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T], 83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}] Step with 86 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {}] Covered Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T], 83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {141[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 118[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {85[T], 141[T]}] Step with 84 Trace 133[T], 118[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {85[T], 141[T]}, {}] Step with 81 Trace 133[T], 118[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {85[T], 141[T]}, {}, {}] Backtrack Trace 133[T], 118[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {85[T], 141[T]}, {81[T]}] Backtrack Trace 133[T], 118[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}] Step with 119 Trace 133[T], 119[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}] Step with 86 Trace 133[T], 119[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {}] Step with 84 Trace 133[T], 119[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {}, {}] Step with 81 Trace 133[T], 119[T], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 119[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {}, {81[T]}] Backtrack Trace 133[T], 119[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {84[T]}] Step with 85 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {84[T]}, {}] Step with 83 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {84[T]}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 140: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 142: l17 -> l17 : oldx0^0'=-1+n13+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post1910, oldx3^0'=x3^post1910, oldx4^0'=x4^post1910, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=n13+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 141: l18 -> l18 : oldx0^0'=n12+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=n12+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0), cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l17 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post1910, oldx3^0'=x3^post1910, oldx4^0'=x4^post1910, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, -x1^0+x0^0 <= 0, cost: 1 New rule: l17 -> l17 : oldx0^0'=-1+n13+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post1910, oldx3^0'=x3^post1910, oldx4^0'=x4^post1910, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=n13+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 x1^0-x0^0 >= 0 [0]: montonic decrease yields 1+x1^0-n13-x0^0 >= 0 x1^0-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ x1^0-x0^0 >= 0) Replacement map: {x1^0-x0^0 >= 0 -> 1+x1^0-n13-x0^0 >= 0} Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}] Step with 86 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}] Step with 85 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}, {}] Step with 83 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}, {}, {}] Covered Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}, {83[T]}] Step with 140 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}, {83[T]}, {140[T]}] Step with 82 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}, {83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}, {83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}, {83[T]}, {82[T], 140[T]}, {}] Covered Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}, {83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}, {83[T], 140[T]}] Step with 82 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}, {83[T], 140[T]}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}] Step with 141 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {141[T]}] Step with 84 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {141[T]}, {}] Step with 81 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {141[T]}, {}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {141[T]}, {81[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}] Step with 85 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}, {}] Step with 82 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}, {}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}, {82[T]}] Step with 83 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}, {82[T]}, {}] Covered Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}] Step with 140 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {140[T]}] Step with 82 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}] Covered Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T], 141[T]}] Step with 84 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T], 141[T]}, {}] Step with 81 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T], 141[T]}, {}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {85[T], 141[T]}, {81[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {142[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {}, {86[T], 142[T]}] Backtrack Trace 133[T], 119[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}] Step with 86 Trace 133[T], 119[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {}] Step with 84 Trace 133[T], 119[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {}, {}] Step with 81 Trace 133[T], 119[T], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {}, {}, {}] Backtrack Trace 133[T], 119[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {}, {81[T]}] Backtrack Trace 133[T], 119[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}] Step with 85 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}, {}] Step with 83 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}, {}, {}] Covered Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}, {83[T]}] Step with 140 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}, {83[T]}, {140[T]}] Step with 82 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}, {83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}, {83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}, {83[T]}, {82[T], 140[T]}, {}] Covered Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}, {83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}, {83[T], 140[T]}] Step with 82 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}, {83[T], 140[T]}, {}] Backtrack Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}] Step with 141 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}] Step with 84 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {}] Step with 81 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {}, {}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {81[T]}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}] Step with 85 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}] Step with 82 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}, {}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T]}] Step with 83 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T]}, {}] Covered Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}] Step with 140 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {140[T]}] Step with 82 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}] Covered Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 119[T], 86[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {142[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 119[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T]}, {86[T], 142[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T]}] Step with 120 Trace 133[T], 120[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T]}, {}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T]}] Step with 121 Trace 133[T], 121[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T]}, {}] Step with 88 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T]}, {}, {}] Step with 76 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T]}, {}, {}, {}] Step with 101 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T]}, {}, {}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 140: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 142: l17 -> l17 : oldx0^0'=-1+n13+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post1910, oldx3^0'=x3^post1910, oldx4^0'=x4^post1910, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=n13+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 141: l18 -> l18 : oldx0^0'=n12+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=n12+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0), cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 143: l19 -> l19 : oldx0^0'=-n14+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post104, oldx3^0'=x3^post104, oldx4^0'=x4^post104, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x0^0'=-n14+x0^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, (-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0), cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l19 -> l19 : oldx0^0'=-1+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post104, oldx3^0'=x3^post104, oldx4^0'=x4^post104, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x0^0'=-1+x0^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, x1^0-x0^0 <= 0, cost: 1 New rule: l19 -> l19 : oldx0^0'=-n14+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post104, oldx3^0'=x3^post104, oldx4^0'=x4^post104, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x0^0'=-n14+x0^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, (-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0), cost: 1 -x1^0+x0^0 >= 0 [0]: montonic decrease yields 1-n14-x1^0+x0^0 >= 0 -x1^0+x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -x1^0+x0^0 >= 0) Replacement map: {-x1^0+x0^0 >= 0 -> 1-n14-x1^0+x0^0 >= 0} Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T]}, {}, {143[T]}] Restart Step with 133 Trace 133[T] Blocked [{}, {}] Step with 129 Trace 133[T], 129[T] Blocked [{}, {}, {}] Step with 98 Trace 133[T], 129[T], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {}, {}, {}] Step with 95 Trace 133[T], 129[T], 98[(1-x1^0+x0^0 <= 0)], 95[T] Blocked [{}, {}, {}, {}, {}] Backtrack Trace 133[T], 129[T], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {}, {}, {95[T]}] Backtrack Trace 133[T], 129[T] Blocked [{}, {}, {98[T]}] Step with 99 Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {}, {98[T]}, {}] Step with 96 Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)], 96[T] Blocked [{}, {}, {98[T]}, {}, {}] Backtrack Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {}, {98[T]}, {96[T]}] Step with 97 Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)], 97[T] Blocked [{}, {}, {98[T]}, {96[T]}, {}] Step with 100 Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)], 97[T], 100[T] Blocked [{}, {}, {98[T]}, {96[T]}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 140: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 142: l17 -> l17 : oldx0^0'=-1+n13+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post1910, oldx3^0'=x3^post1910, oldx4^0'=x4^post1910, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=n13+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 141: l18 -> l18 : oldx0^0'=n12+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=n12+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0), cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 143: l19 -> l19 : oldx0^0'=-n14+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post104, oldx3^0'=x3^post104, oldx4^0'=x4^post104, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x0^0'=-n14+x0^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, (-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0), cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 144: l29 -> l29 : oldx0^0'=-n15+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post311, oldx5^0'=x4^post34, x0^0'=-n15+x0^0, x4^0'=x4^post34, (-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0), cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l29 -> l29 : oldx0^0'=-1+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post311, oldx5^0'=x4^post34, x0^0'=-1+x0^0, x4^0'=x4^post34, x1^0-x0^0 <= 0, cost: 1 New rule: l29 -> l29 : oldx0^0'=-n15+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post311, oldx5^0'=x4^post34, x0^0'=-n15+x0^0, x4^0'=x4^post34, (-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0), cost: 1 -x1^0+x0^0 >= 0 [0]: montonic decrease yields 1-n15-x1^0+x0^0 >= 0 -x1^0+x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -x1^0+x0^0 >= 0) Replacement map: {-x1^0+x0^0 >= 0 -> 1-n15-x1^0+x0^0 >= 0} Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {}, {98[T]}, {144[T]}] Step with 98 Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {}, {98[T]}, {144[T]}, {}] Step with 95 Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)], 95[T] Blocked [{}, {}, {98[T]}, {144[T]}, {}, {}] Backtrack Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {}, {98[T]}, {144[T]}, {95[T]}] Backtrack Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {}, {98[T]}, {98[T], 144[T]}] Step with 99 Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {}, {98[T]}, {98[T], 144[T]}, {}] Step with 97 Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 97[T] Blocked [{}, {}, {98[T]}, {98[T], 144[T]}, {}, {}] Step with 100 Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 97[T], 100[T] Blocked [{}, {}, {98[T]}, {98[T], 144[T]}, {}, {}, {}] Covered Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 97[T] Blocked [{}, {}, {98[T]}, {98[T], 144[T]}, {}, {100[T]}] Backtrack Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {}, {98[T]}, {98[T], 144[T]}, {97[T]}] Step with 96 Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 96[T] Blocked [{}, {}, {98[T]}, {98[T], 144[T]}, {97[T]}, {}] Backtrack Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {}, {98[T]}, {98[T], 144[T]}, {96[T], 97[T]}] Backtrack Trace 133[T], 129[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {}, {98[T]}, {98[T], 99[T], 144[T]}] Backtrack Trace 133[T], 129[T] Blocked [{}, {}, {98[T], 144[T]}] Step with 99 Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {}, {98[T], 144[T]}, {}] Step with 96 Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)], 96[T] Blocked [{}, {}, {98[T], 144[T]}, {}, {}] Backtrack Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {}, {98[T], 144[T]}, {96[T]}] Step with 97 Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)], 97[T] Blocked [{}, {}, {98[T], 144[T]}, {96[T]}, {}] Step with 100 Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)], 97[T], 100[T] Blocked [{}, {}, {98[T], 144[T]}, {96[T]}, {}, {}] Covered Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)], 97[T] Blocked [{}, {}, {98[T], 144[T]}, {96[T]}, {100[T]}] Backtrack Trace 133[T], 129[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {}, {98[T], 144[T]}, {96[T], 97[T]}] Backtrack Trace 133[T], 129[T] Blocked [{}, {}, {98[T], 99[T], 144[T]}] Backtrack Trace 133[T] Blocked [{}, {129[T]}] Step with 131 Trace 133[T], 131[T] Blocked [{}, {129[T]}, {}] Backtrack Trace 133[T] Blocked [{}, {129[T], 131[T]}] Step with 113 Trace 133[T], 113[T] Blocked [{}, {129[T], 131[T]}, {}] Step with 78 Trace 133[T], 113[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {129[T], 131[T]}, {}, {}] Step with 74 Trace 133[T], 113[T], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {129[T], 131[T]}, {}, {}, {}] Backtrack Trace 133[T], 113[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {129[T], 131[T]}, {}, {74[T]}] Backtrack Trace 133[T], 113[T] Blocked [{}, {129[T], 131[T]}, {78[T]}] Step with 79 Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {129[T], 131[T]}, {78[T]}, {}] Step with 77 Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {129[T], 131[T]}, {78[T]}, {}, {}] Covered Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {129[T], 131[T]}, {78[T]}, {77[T]}] Step with 139 Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {129[T], 131[T]}, {78[T]}, {77[T]}, {139[T]}] Step with 77 Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {129[T], 131[T]}, {78[T]}, {77[T]}, {139[T]}, {}] Covered Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {129[T], 131[T]}, {78[T]}, {77[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 113[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {129[T], 131[T]}, {78[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 113[T] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}] Step with 134 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {134[T]}] Step with 78 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {134[T]}, {}] Step with 74 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {134[T]}, {}, {}] Backtrack Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {134[T]}, {74[T]}] Backtrack Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {78[T], 134[T]}] Step with 79 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {78[T], 134[T]}, {}] Step with 77 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {78[T], 134[T]}, {}, {}] Covered Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}] Step with 139 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}, {139[T]}] Step with 77 Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}, {139[T]}, {}] Covered Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 113[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 113[T] Blocked [{}, {129[T], 131[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T] Blocked [{}, {113[T], 129[T], 131[T]}] Step with 112 Trace 133[T], 112[T] Blocked [{}, {113[T], 129[T], 131[T]}, {}] Step with 77 Trace 133[T], 112[T], 77[T] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {}] Step with 79 Trace 133[T], 112[T], 77[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {}, {}] Covered Trace 133[T], 112[T], 77[T] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T]}] Step with 134 Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T]}, {134[T]}] Step with 78 Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T]}, {134[T]}, {}] Step with 74 Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T]}, {134[T]}, {}, {}] Backtrack Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T]}, {134[T]}, {74[T]}] Backtrack Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T]}, {78[T], 134[T]}] Step with 79 Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T]}, {78[T], 134[T]}, {}] Covered Trace 133[T], 112[T], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 112[T], 77[T] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T], 134[T]}] Step with 78 Trace 133[T], 112[T], 77[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T], 134[T]}, {}] Step with 74 Trace 133[T], 112[T], 77[T], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T], 134[T]}, {}, {}] Backtrack Trace 133[T], 112[T], 77[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {79[T], 134[T]}, {74[T]}] Backtrack Trace 133[T], 112[T], 77[T] Blocked [{}, {113[T], 129[T], 131[T]}, {}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 112[T] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}] Step with 139 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}] Step with 77 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {}] Step with 78 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {}, {}] Step with 74 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {}, {}, {}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {}, {74[T]}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {78[T]}] Step with 79 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {78[T]}, {}] Covered Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {78[T], 79[T]}] Step with 134 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {78[T], 79[T]}, {134[T]}] Step with 78 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {78[T], 79[T]}, {134[T]}, {}] Step with 74 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {78[T], 79[T]}, {134[T]}, {}, {}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {78[T], 79[T]}, {134[T]}, {74[T]}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {78[T], 79[T]}, {78[T], 134[T]}] Step with 79 Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {78[T], 79[T]}, {78[T], 134[T]}, {}] Covered Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {78[T], 79[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {139[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 112[T], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 112[T] Blocked [{}, {113[T], 129[T], 131[T]}, {77[T], 139[T]}] Backtrack Trace 133[T] Blocked [{}, {112[T], 113[T], 129[T], 131[T]}] Step with 120 Trace 133[T], 120[T] Blocked [{}, {112[T], 113[T], 129[T], 131[T]}, {}] Backtrack Trace 133[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}] Step with 111 Trace 133[T], 111[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {}] Step with 75 Trace 133[T], 111[T], 75[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {}, {}] Backtrack Trace 133[T], 111[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}] Step with 76 Trace 133[T], 111[T], 76[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}] Step with 101 Trace 133[T], 111[T], 76[T], 101[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {}] Step with 87 Trace 133[T], 111[T], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {}, {}] Step with 73 Trace 133[T], 111[T], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 111[T], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {}, {73[T]}] Backtrack Trace 133[T], 111[T], 76[T], 101[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {87[T]}] Step with 88 Trace 133[T], 111[T], 76[T], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {87[T]}, {}] Covered Trace 133[T], 111[T], 76[T], 101[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {87[T], 88[T]}] Step with 143 Trace 133[T], 111[T], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {87[T], 88[T]}, {143[T]}] Step with 87 Trace 133[T], 111[T], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {87[T], 88[T]}, {143[T]}, {}] Step with 73 Trace 133[T], 111[T], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {87[T], 88[T]}, {143[T]}, {}, {}] Backtrack Trace 133[T], 111[T], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {87[T], 88[T]}, {143[T]}, {73[T]}] Backtrack Trace 133[T], 111[T], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {87[T], 88[T]}, {87[T], 143[T]}] Step with 88 Trace 133[T], 111[T], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {87[T], 88[T]}, {87[T], 143[T]}, {}] Covered Trace 133[T], 111[T], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {87[T], 88[T]}, {87[T], 88[T], 143[T]}] Backtrack Trace 133[T], 111[T], 76[T], 101[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {}, {87[T], 88[T], 143[T]}] Backtrack Trace 133[T], 111[T], 76[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T]}, {101[T]}] Backtrack Trace 133[T], 111[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}] Step with 138 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {138[T]}] Step with 75 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 75[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {138[T]}, {}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}] Step with 76 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}] Step with 101 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {}] Step with 88 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {}, {}] Covered Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T]}] Step with 143 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T]}, {143[T]}] Step with 87 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T]}, {143[T]}, {}] Step with 73 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T]}, {143[T]}, {}, {}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T]}, {143[T]}, {73[T]}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T]}, {87[T], 143[T]}] Step with 88 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T]}, {87[T], 143[T]}, {}] Covered Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T]}, {87[T], 88[T], 143[T]}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T], 143[T]}] Step with 87 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T], 143[T]}, {}] Step with 73 Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T], 143[T]}, {}, {}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {88[T], 143[T]}, {73[T]}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {87[T], 88[T], 143[T]}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {101[T]}] Backtrack Trace 133[T], 111[T], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 111[T] Blocked [{}, {112[T], 113[T], 120[T], 129[T], 131[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T] Blocked [{}, {111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}] Step with 110 Trace 133[T], 110[T] Blocked [{}, {111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {}] Step with 74 Trace 133[T], 110[T], 74[T] Blocked [{}, {111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {}, {}] Backtrack Trace 133[T], 110[T] Blocked [{}, {111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {74[T]}] Backtrack Trace 133[T] Blocked [{}, {110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}] Step with 108 Trace 133[T], 108[T] Blocked [{}, {110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {}] Step with 73 Trace 133[T], 108[T], 73[T] Blocked [{}, {110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {}, {}] Backtrack Trace 133[T], 108[T] Blocked [{}, {110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {73[T]}] Backtrack Trace 133[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}] Step with 123 Trace 133[T], 123[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {}] Step with 90 Trace 133[T], 123[T], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {}, {}] Backtrack Trace 133[T], 123[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}] Step with 91 Trace 133[T], 123[T], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {}] Step with 94 Trace 133[T], 123[T], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {}, {}] Step with 92 Trace 133[T], 123[T], 91[T], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {}, {}, {}] Step with 89 Trace 133[T], 123[T], 91[T], 94[T], 92[(1+x1^0-x0^0 <= 0)], 89[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 123[T], 91[T], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {}, {}, {89[T]}] Backtrack Trace 133[T], 123[T], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {}, {92[T]}] Step with 93 Trace 133[T], 123[T], 91[T], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {}, {92[T]}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 140: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 142: l17 -> l17 : oldx0^0'=-1+n13+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post1910, oldx3^0'=x3^post1910, oldx4^0'=x4^post1910, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=n13+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 141: l18 -> l18 : oldx0^0'=n12+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=n12+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0), cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 143: l19 -> l19 : oldx0^0'=-n14+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post104, oldx3^0'=x3^post104, oldx4^0'=x4^post104, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x0^0'=-n14+x0^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, (-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0), cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 145: l22 -> l22 : oldx0^0'=n19+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post281, oldx4^0'=x4^post281, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x0^0'=n19+x0^0, x3^0'=x3^post27, x4^0'=x4^post27, (-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0), cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 144: l29 -> l29 : oldx0^0'=-n15+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post311, oldx5^0'=x4^post34, x0^0'=-n15+x0^0, x4^0'=x4^post34, (-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0), cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l22 -> l22 : oldx0^0'=1+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post281, oldx4^0'=x4^post281, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x0^0'=1+x0^0, x3^0'=x3^post27, x4^0'=x4^post27, 1-x1^0+x0^0 <= 0, cost: 1 New rule: l22 -> l22 : oldx0^0'=n19+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post281, oldx4^0'=x4^post281, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x0^0'=n19+x0^0, x3^0'=x3^post27, x4^0'=x4^post27, (-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0), cost: 1 -1+x1^0-x0^0 >= 0 [0]: montonic decrease yields -n19+x1^0-x0^0 >= 0 -1+x1^0-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+x1^0-x0^0 >= 0) Replacement map: {-1+x1^0-x0^0 >= 0 -> -n19+x1^0-x0^0 >= 0} Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {145[T]}] Step with 90 Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {145[T]}, {}] Backtrack Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {90[T], 145[T]}] Step with 91 Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {90[T], 145[T]}, {}] Step with 94 Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {90[T], 145[T]}, {}, {}] Step with 93 Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {90[T], 145[T]}, {}, {}, {}] Covered Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {90[T], 145[T]}, {}, {93[T]}] Step with 92 Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {90[T], 145[T]}, {}, {93[T]}, {}] Step with 89 Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T], 94[T], 92[(1+x1^0-x0^0 <= 0)], 89[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {90[T], 145[T]}, {}, {93[T]}, {}, {}] Backtrack Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {90[T], 145[T]}, {}, {93[T]}, {89[T]}] Backtrack Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {90[T], 145[T]}, {}, {92[T], 93[T]}] Backtrack Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {90[T], 145[T]}, {94[T]}] Backtrack Trace 133[T], 123[T], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 123[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T], 145[T]}] Step with 91 Trace 133[T], 123[T], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T], 145[T]}, {}] Step with 94 Trace 133[T], 123[T], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T], 145[T]}, {}, {}] Step with 92 Trace 133[T], 123[T], 91[T], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T], 145[T]}, {}, {}, {}] Step with 89 Trace 133[T], 123[T], 91[T], 94[T], 92[(1+x1^0-x0^0 <= 0)], 89[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T], 145[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 123[T], 91[T], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T], 145[T]}, {}, {}, {89[T]}] Backtrack Trace 133[T], 123[T], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T], 145[T]}, {}, {92[T]}] Step with 93 Trace 133[T], 123[T], 91[T], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T], 145[T]}, {}, {92[T]}, {}] Covered Trace 133[T], 123[T], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T], 145[T]}, {}, {92[T], 93[T]}] Backtrack Trace 133[T], 123[T], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T], 145[T]}, {94[T]}] Backtrack Trace 133[T], 123[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 129[T], 131[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 123[T], 129[T], 131[T]}] Step with 116 Trace 133[T], 116[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 123[T], 129[T], 131[T]}, {}] Step with 81 Trace 133[T], 116[T], 81[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 123[T], 129[T], 131[T]}, {}, {}] Backtrack Trace 133[T], 116[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 120[T], 123[T], 129[T], 131[T]}, {81[T]}] Backtrack Trace 133[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}] Step with 124 Trace 133[T], 124[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}] Step with 93 Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {}] Step with 91 Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {}, {}] Step with 94 Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 140: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 142: l17 -> l17 : oldx0^0'=-1+n13+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post1910, oldx3^0'=x3^post1910, oldx4^0'=x4^post1910, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=n13+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 141: l18 -> l18 : oldx0^0'=n12+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=n12+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0), cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 143: l19 -> l19 : oldx0^0'=-n14+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post104, oldx3^0'=x3^post104, oldx4^0'=x4^post104, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x0^0'=-n14+x0^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, (-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0), cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 145: l22 -> l22 : oldx0^0'=n19+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post281, oldx4^0'=x4^post281, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x0^0'=n19+x0^0, x3^0'=x3^post27, x4^0'=x4^post27, (-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0), cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 146: l24 -> l24 : oldx0^0'=n20+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post254, oldx4^0'=x4^post254, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x0^0'=n20+x0^0, x3^0'=x3^post28, x4^0'=x4^post28, (1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0), cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 144: l29 -> l29 : oldx0^0'=-n15+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post311, oldx5^0'=x4^post34, x0^0'=-n15+x0^0, x4^0'=x4^post34, (-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0), cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l24 -> l24 : oldx0^0'=1+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post254, oldx4^0'=x4^post254, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x0^0'=1+x0^0, x3^0'=x3^post28, x4^0'=x4^post28, -x1^0+x0^0 <= 0, cost: 1 New rule: l24 -> l24 : oldx0^0'=n20+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post254, oldx4^0'=x4^post254, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x0^0'=n20+x0^0, x3^0'=x3^post28, x4^0'=x4^post28, (1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0), cost: 1 x1^0-x0^0 >= 0 [0]: montonic decrease yields 1-n20+x1^0-x0^0 >= 0 x1^0-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ x1^0-x0^0 >= 0) Replacement map: {x1^0-x0^0 >= 0 -> 1-n20+x1^0-x0^0 >= 0} Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {146[T]}] Step with 92 Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {146[T]}, {}] Step with 89 Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 92[(1+x1^0-x0^0 <= 0)], 89[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {146[T]}, {}, {}] Backtrack Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {146[T]}, {89[T]}] Backtrack Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}] Step with 93 Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {}] Step with 91 Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {}, {}] Step with 94 Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {}, {}, {}] Covered Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {}, {94[T]}] Backtrack Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {91[T]}] Step with 145 Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {91[T]}, {145[T]}] Step with 90 Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {91[T]}, {145[T]}, {}] Backtrack Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {91[T]}, {90[T], 145[T]}] Step with 91 Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {91[T]}, {90[T], 145[T]}, {}] Step with 94 Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {91[T]}, {90[T], 145[T]}, {}, {}] Covered Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {91[T]}, {90[T], 145[T]}, {94[T]}] Backtrack Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {91[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {91[T], 145[T]}] Step with 90 Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {91[T], 145[T]}, {}] Backtrack Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 146[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 124[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {}, {92[T], 93[T], 146[T]}] Backtrack Trace 133[T], 124[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}] Step with 93 Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {}] Step with 90 Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {}, {}] Backtrack Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T]}] Step with 91 Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T]}, {}] Step with 94 Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T]}, {}, {}] Covered Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T]}, {94[T]}] Backtrack Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T], 91[T]}] Step with 145 Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T], 91[T]}, {145[T]}] Step with 90 Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T], 91[T]}, {145[T]}, {}] Backtrack Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T], 91[T]}, {90[T], 145[T]}] Step with 91 Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T], 91[T]}, {90[T], 145[T]}, {}] Step with 94 Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T], 91[T]}, {90[T], 145[T]}, {}, {}] Covered Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T], 91[T]}, {90[T], 145[T]}, {94[T]}] Backtrack Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T], 91[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 124[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {146[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 124[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {93[T], 146[T]}] Step with 92 Trace 133[T], 124[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {93[T], 146[T]}, {}] Step with 89 Trace 133[T], 124[T], 92[(1+x1^0-x0^0 <= 0)], 89[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {93[T], 146[T]}, {}, {}] Backtrack Trace 133[T], 124[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {93[T], 146[T]}, {89[T]}] Backtrack Trace 133[T], 124[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 129[T], 131[T]}, {92[T], 93[T], 146[T]}] Backtrack Trace 133[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 129[T], 131[T]}] Step with 126 Trace 133[T], 126[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 129[T], 131[T]}, {}] Backtrack Trace 133[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}] Step with 125 Trace 133[T], 125[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}] Step with 94 Trace 133[T], 125[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {}] Step with 92 Trace 133[T], 125[T], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {}, {}] Step with 89 Trace 133[T], 125[T], 94[T], 92[(1+x1^0-x0^0 <= 0)], 89[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 125[T], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {}, {89[T]}] Backtrack Trace 133[T], 125[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {92[T]}] Step with 93 Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {92[T]}, {}] Step with 91 Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {92[T]}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 140: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 142: l17 -> l17 : oldx0^0'=-1+n13+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post1910, oldx3^0'=x3^post1910, oldx4^0'=x4^post1910, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=n13+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 141: l18 -> l18 : oldx0^0'=n12+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=n12+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0), cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 143: l19 -> l19 : oldx0^0'=-n14+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post104, oldx3^0'=x3^post104, oldx4^0'=x4^post104, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x0^0'=-n14+x0^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, (-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0), cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 145: l22 -> l22 : oldx0^0'=n19+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post281, oldx4^0'=x4^post281, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x0^0'=n19+x0^0, x3^0'=x3^post27, x4^0'=x4^post27, (-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0), cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 147: l23 -> l23 : oldx0^0'=-1+n28+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post2710, oldx4^0'=x4^post2710, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=n28+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, (-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0), cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 146: l24 -> l24 : oldx0^0'=n20+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post254, oldx4^0'=x4^post254, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x0^0'=n20+x0^0, x3^0'=x3^post28, x4^0'=x4^post28, (1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0), cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 144: l29 -> l29 : oldx0^0'=-n15+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post311, oldx5^0'=x4^post34, x0^0'=-n15+x0^0, x4^0'=x4^post34, (-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0), cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l23 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post2710, oldx4^0'=x4^post2710, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, -x1^0+x0^0 <= 0, cost: 1 New rule: l23 -> l23 : oldx0^0'=-1+n28+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post2710, oldx4^0'=x4^post2710, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=n28+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, (-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0), cost: 1 x1^0-x0^0 >= 0 [0]: montonic decrease yields 1+x1^0-n28-x0^0 >= 0 x1^0-x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ x1^0-x0^0 >= 0) Replacement map: {x1^0-x0^0 >= 0 -> 1+x1^0-n28-x0^0 >= 0} Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}] Step with 94 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}] Step with 93 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}, {}] Step with 91 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 93[(-x1^0+x0^0 <= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}, {}, {}] Covered Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}, {91[T]}] Step with 145 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}, {91[T]}, {145[T]}] Step with 90 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}, {91[T]}, {145[T]}, {}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}, {91[T]}, {90[T], 145[T]}] Step with 91 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}, {91[T]}, {90[T], 145[T]}, {}] Covered Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}, {91[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}, {91[T], 145[T]}] Step with 90 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 93[(-x1^0+x0^0 <= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}, {91[T], 145[T]}, {}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}] Step with 146 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {146[T]}] Step with 92 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {146[T]}, {}] Step with 89 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 92[(1+x1^0-x0^0 <= 0)], 89[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {146[T]}, {}, {}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {146[T]}, {89[T]}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}] Step with 93 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}, {}] Step with 90 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}, {}, {}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}, {90[T]}] Step with 91 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}, {90[T]}, {}] Covered Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}, {90[T], 91[T]}] Step with 145 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}, {90[T], 91[T]}, {145[T]}] Step with 90 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}, {90[T], 91[T]}, {145[T]}, {}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}, {90[T], 91[T]}, {90[T], 145[T]}] Step with 91 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}, {90[T], 91[T]}, {90[T], 145[T]}, {}] Covered Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}, {90[T], 91[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 146[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T]}, {92[T], 93[T], 146[T]}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T], 146[T]}] Step with 92 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T], 146[T]}, {}] Step with 89 Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 92[(1+x1^0-x0^0 <= 0)], 89[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T], 146[T]}, {}, {}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {93[T], 146[T]}, {89[T]}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {147[T]}, {92[T], 93[T], 146[T]}] Backtrack Trace 133[T], 125[T], 147[(-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {}, {94[T], 147[T]}] Backtrack Trace 133[T], 125[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}] Step with 94 Trace 133[T], 125[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {}] Step with 92 Trace 133[T], 125[T], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {}, {}] Step with 89 Trace 133[T], 125[T], 94[T], 92[(1+x1^0-x0^0 <= 0)], 89[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {}, {}, {}] Backtrack Trace 133[T], 125[T], 94[T], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {}, {89[T]}] Backtrack Trace 133[T], 125[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}] Step with 93 Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}, {}] Step with 91 Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}, {}, {}] Covered Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}, {91[T]}] Step with 145 Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}, {91[T]}, {145[T]}] Step with 90 Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}, {91[T]}, {145[T]}, {}] Backtrack Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}, {91[T]}, {90[T], 145[T]}] Step with 91 Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}, {91[T]}, {90[T], 145[T]}, {}] Covered Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}, {91[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}, {91[T], 145[T]}] Step with 90 Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}, {91[T], 145[T]}, {}] Backtrack Trace 133[T], 125[T], 94[T], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 125[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}] Step with 146 Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {146[T]}] Step with 92 Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {146[T]}, {}] Step with 89 Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 92[(1+x1^0-x0^0 <= 0)], 89[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {146[T]}, {}, {}] Backtrack Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 92[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {146[T]}, {89[T]}] Backtrack Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}] Step with 93 Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}, {}] Step with 90 Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}, {}, {}] Backtrack Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}, {90[T]}] Step with 91 Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}, {90[T]}, {}] Covered Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}, {90[T], 91[T]}] Step with 145 Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}, {90[T], 91[T]}, {145[T]}] Step with 90 Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 90[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}, {90[T], 91[T]}, {145[T]}, {}] Backtrack Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}, {90[T], 91[T]}, {90[T], 145[T]}] Step with 91 Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)], 91[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}, {90[T], 91[T]}, {90[T], 145[T]}, {}] Covered Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)], 145[(-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}, {90[T], 91[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)], 93[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 146[T]}, {90[T], 91[T], 145[T]}] Backtrack Trace 133[T], 125[T], 94[T], 146[(1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T]}, {92[T], 93[T], 146[T]}] Backtrack Trace 133[T], 125[T], 94[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {147[T]}, {92[T], 93[T], 146[T]}] Backtrack Trace 133[T], 125[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 126[T], 129[T], 131[T]}, {94[T], 147[T]}] Backtrack Trace 133[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}] Step with 105 Trace 133[T], 105[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}] Step with 70 Trace 133[T], 105[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {}] Step with 67 Trace 133[T], 105[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {}, {}] Backtrack Trace 133[T], 105[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {67[T]}] Backtrack Trace 133[T], 105[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}] Step with 71 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {}] Step with 68 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {}, {}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T]}] Step with 69 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T]}, {}] Step with 72 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T], 72[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T]}, {}, {}] Covered Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T]}, {72[T]}] Step with 137 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T]}, {72[T]}, {137[T]}] Step with 72 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T]}, {72[T]}, {137[T]}, {}] Covered Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T]}, {72[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}] Step with 135 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}, {135[T]}] Step with 68 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}] Step with 72 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {}] Covered Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}] Step with 137 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}] Step with 72 Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {}] Covered Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 105[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 105[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}] Step with 136 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {136[T]}] Step with 70 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {136[T]}, {}] Step with 67 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {136[T]}, {}, {}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {136[T]}, {67[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}] Step with 71 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}] Step with 69 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}, {}] Step with 72 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T], 72[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}, {}, {}] Covered Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}, {72[T]}] Step with 137 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}, {72[T]}, {137[T]}] Step with 72 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}, {72[T]}, {137[T]}, {}] Covered Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}, {72[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}, {72[T], 137[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}] Step with 135 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}, {135[T]}] Step with 68 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}, {}] Step with 72 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}, {}, {}] Covered Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}, {72[T]}] Step with 137 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}] Step with 72 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {}] Covered Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}, {72[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}, {68[T], 135[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T], 135[T]}] Step with 68 Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {69[T], 135[T]}, {}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 105[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 105[T] Blocked [{}, {108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T] Blocked [{}, {105[T], 108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}] Step with 122 Trace 133[T], 122[T] Blocked [{}, {105[T], 108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}] Step with 89 Trace 133[T], 122[T], 89[T] Blocked [{}, {105[T], 108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {}] Backtrack Trace 133[T], 122[T] Blocked [{}, {105[T], 108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {89[T]}] Backtrack Trace 133[T] Blocked [{}, {105[T], 108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}] Step with 109 Trace 133[T], 109[T] Blocked [{}, {105[T], 108[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}] Backtrack Trace 133[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}] Step with 128 Trace 133[T], 128[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}] Step with 97 Trace 133[T], 128[T], 97[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {}] Step with 100 Trace 133[T], 128[T], 97[T], 100[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {}, {}] Step with 99 Trace 133[T], 128[T], 97[T], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 140: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 142: l17 -> l17 : oldx0^0'=-1+n13+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post1910, oldx3^0'=x3^post1910, oldx4^0'=x4^post1910, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=n13+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 141: l18 -> l18 : oldx0^0'=n12+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=n12+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0), cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 143: l19 -> l19 : oldx0^0'=-n14+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post104, oldx3^0'=x3^post104, oldx4^0'=x4^post104, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x0^0'=-n14+x0^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, (-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0), cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 145: l22 -> l22 : oldx0^0'=n19+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post281, oldx4^0'=x4^post281, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x0^0'=n19+x0^0, x3^0'=x3^post27, x4^0'=x4^post27, (-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0), cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 147: l23 -> l23 : oldx0^0'=-1+n28+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post2710, oldx4^0'=x4^post2710, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=n28+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, (-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0), cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 146: l24 -> l24 : oldx0^0'=n20+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post254, oldx4^0'=x4^post254, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x0^0'=n20+x0^0, x3^0'=x3^post28, x4^0'=x4^post28, (1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0), cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 148: l27 -> l27 : oldx0^0'=-n30+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post345, oldx5^0'=x4^post33, x0^0'=-n30+x0^0, x4^0'=x4^post33, (-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0), cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 144: l29 -> l29 : oldx0^0'=-n15+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post311, oldx5^0'=x4^post34, x0^0'=-n15+x0^0, x4^0'=x4^post34, (-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0), cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l27 -> l27 : oldx0^0'=-1+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post345, oldx5^0'=x4^post33, x0^0'=-1+x0^0, x4^0'=x4^post33, 1+x1^0-x0^0 <= 0, cost: 1 New rule: l27 -> l27 : oldx0^0'=-n30+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post345, oldx5^0'=x4^post33, x0^0'=-n30+x0^0, x4^0'=x4^post33, (-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0), cost: 1 -1-x1^0+x0^0 >= 0 [0]: montonic decrease yields -x1^0-n30+x0^0 >= 0 -1-x1^0+x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1-x1^0+x0^0 >= 0) Replacement map: {-1-x1^0+x0^0 >= 0 -> -x1^0-n30+x0^0 >= 0} Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {148[T]}] Step with 96 Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 96[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {148[T]}, {}] Backtrack Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}] Step with 97 Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}] Step with 100 Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {}] Step with 99 Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {}, {}] Covered Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T]}] Step with 144 Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T]}, {144[T]}] Step with 98 Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T]}, {144[T]}, {}] Step with 95 Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)], 95[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T]}, {144[T]}, {}, {}] Backtrack Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T]}, {144[T]}, {95[T]}] Backtrack Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T]}, {98[T], 144[T]}] Step with 99 Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T]}, {98[T], 144[T]}, {}] Covered Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T]}, {98[T], 99[T], 144[T]}] Backtrack Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T], 144[T]}] Step with 98 Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T], 144[T]}, {}] Step with 95 Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T], 98[(1-x1^0+x0^0 <= 0)], 95[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T], 144[T]}, {}, {}] Backtrack Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {99[T], 144[T]}, {95[T]}] Backtrack Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T], 100[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {}, {98[T], 99[T], 144[T]}] Backtrack Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 148[T]}, {100[T]}] Backtrack Trace 133[T], 128[T], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {}, {96[T], 97[T], 148[T]}] Backtrack Trace 133[T], 128[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}] Step with 97 Trace 133[T], 128[T], 97[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}] Step with 100 Trace 133[T], 128[T], 97[T], 100[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {}] Step with 98 Trace 133[T], 128[T], 97[T], 100[T], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {}, {}] Step with 95 Trace 133[T], 128[T], 97[T], 100[T], 98[(1-x1^0+x0^0 <= 0)], 95[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 128[T], 97[T], 100[T], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {}, {95[T]}] Backtrack Trace 133[T], 128[T], 97[T], 100[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {98[T]}] Step with 99 Trace 133[T], 128[T], 97[T], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {98[T]}, {}] Covered Trace 133[T], 128[T], 97[T], 100[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {98[T], 99[T]}] Step with 144 Trace 133[T], 128[T], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {98[T], 99[T]}, {144[T]}] Step with 98 Trace 133[T], 128[T], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {98[T], 99[T]}, {144[T]}, {}] Step with 95 Trace 133[T], 128[T], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)], 95[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {98[T], 99[T]}, {144[T]}, {}, {}] Backtrack Trace 133[T], 128[T], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {98[T], 99[T]}, {144[T]}, {95[T]}] Backtrack Trace 133[T], 128[T], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {98[T], 99[T]}, {98[T], 144[T]}] Step with 99 Trace 133[T], 128[T], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {98[T], 99[T]}, {98[T], 144[T]}, {}] Covered Trace 133[T], 128[T], 97[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {98[T], 99[T]}, {98[T], 99[T], 144[T]}] Backtrack Trace 133[T], 128[T], 97[T], 100[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {}, {98[T], 99[T], 144[T]}] Backtrack Trace 133[T], 128[T], 97[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {148[T]}, {100[T]}] Backtrack Trace 133[T], 128[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {97[T], 148[T]}] Step with 96 Trace 133[T], 128[T], 96[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {97[T], 148[T]}, {}] Backtrack Trace 133[T], 128[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 129[T], 131[T]}, {96[T], 97[T], 148[T]}] Backtrack Trace 133[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}] Step with 104 Trace 133[T], 104[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}] Step with 68 Trace 133[T], 104[T], 68[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {}] Backtrack Trace 133[T], 104[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}] Step with 69 Trace 133[T], 104[T], 69[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}] Step with 72 Trace 133[T], 104[T], 69[T], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {}] Step with 71 Trace 133[T], 104[T], 69[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {}, {}] Covered Trace 133[T], 104[T], 69[T], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T]}] Step with 136 Trace 133[T], 104[T], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T]}, {136[T]}] Step with 70 Trace 133[T], 104[T], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T]}, {136[T]}, {}] Step with 67 Trace 133[T], 104[T], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T]}, {136[T]}, {}, {}] Backtrack Trace 133[T], 104[T], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T]}, {136[T]}, {67[T]}] Backtrack Trace 133[T], 104[T], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T]}, {70[T], 136[T]}] Step with 71 Trace 133[T], 104[T], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T]}, {70[T], 136[T]}, {}] Covered Trace 133[T], 104[T], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 104[T], 69[T], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T], 136[T]}] Step with 70 Trace 133[T], 104[T], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T], 136[T]}, {}] Step with 67 Trace 133[T], 104[T], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T], 136[T]}, {}, {}] Backtrack Trace 133[T], 104[T], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {71[T], 136[T]}, {67[T]}] Backtrack Trace 133[T], 104[T], 69[T], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 104[T], 69[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}] Step with 137 Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}] Step with 72 Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {}] Step with 70 Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {}, {}] Step with 67 Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {}, {}, {}] Backtrack Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {}, {67[T]}] Backtrack Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {70[T]}] Step with 71 Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {70[T]}, {}] Covered Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}] Step with 136 Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}] Step with 70 Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {}] Step with 67 Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {}, {}] Backtrack Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {67[T]}] Backtrack Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}] Step with 71 Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}] Covered Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {137[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 104[T], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 104[T], 69[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 104[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}] Step with 135 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {135[T]}] Step with 68 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}] Step with 72 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {}] Step with 71 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {}, {}] Covered Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T]}] Step with 136 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T]}, {136[T]}] Step with 70 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T]}, {136[T]}, {}] Step with 67 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T]}, {136[T]}, {}, {}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T]}, {136[T]}, {67[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T]}, {70[T], 136[T]}] Step with 71 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T]}, {70[T], 136[T]}, {}] Covered Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T], 136[T]}] Step with 70 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T], 136[T]}, {}] Step with 67 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T], 136[T]}, {}, {}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {71[T], 136[T]}, {67[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}] Step with 137 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}] Step with 72 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {}] Step with 70 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {}, {}] Step with 67 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {}, {}, {}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {}, {67[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {70[T]}] Step with 71 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {70[T]}, {}] Covered Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}] Step with 136 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}] Step with 70 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {}] Step with 67 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {}, {}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {67[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}] Step with 71 Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}] Covered Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {137[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 104[T], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 104[T] Blocked [{}, {105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}] Step with 132 Trace 133[T], 132[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}] Step with 101 Trace 133[T], 132[T], 101[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {}] Step with 87 Trace 133[T], 132[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {}, {}] Step with 73 Trace 133[T], 132[T], 101[T], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 132[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {}, {73[T]}] Backtrack Trace 133[T], 132[T], 101[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {87[T]}] Step with 88 Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {87[T]}, {}] Step with 76 Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {87[T]}, {}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 149: l10 -> l10 : oldx0^0'=1-n39+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post2214, oldx3^0'=x3^post2214, oldx4^0'=x4^post2214, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-n39+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, (1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0), cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 140: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 142: l17 -> l17 : oldx0^0'=-1+n13+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post1910, oldx3^0'=x3^post1910, oldx4^0'=x4^post1910, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=n13+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 141: l18 -> l18 : oldx0^0'=n12+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=n12+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0), cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 143: l19 -> l19 : oldx0^0'=-n14+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post104, oldx3^0'=x3^post104, oldx4^0'=x4^post104, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x0^0'=-n14+x0^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, (-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0), cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 145: l22 -> l22 : oldx0^0'=n19+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post281, oldx4^0'=x4^post281, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x0^0'=n19+x0^0, x3^0'=x3^post27, x4^0'=x4^post27, (-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0), cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 147: l23 -> l23 : oldx0^0'=-1+n28+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post2710, oldx4^0'=x4^post2710, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=n28+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, (-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0), cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 146: l24 -> l24 : oldx0^0'=n20+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post254, oldx4^0'=x4^post254, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x0^0'=n20+x0^0, x3^0'=x3^post28, x4^0'=x4^post28, (1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0), cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 148: l27 -> l27 : oldx0^0'=-n30+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post345, oldx5^0'=x4^post33, x0^0'=-n30+x0^0, x4^0'=x4^post33, (-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0), cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 144: l29 -> l29 : oldx0^0'=-n15+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post311, oldx5^0'=x4^post34, x0^0'=-n15+x0^0, x4^0'=x4^post34, (-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0), cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l10 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post2214, oldx3^0'=x3^post2214, oldx4^0'=x4^post2214, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, x1^0-x0^0 <= 0, cost: 1 New rule: l10 -> l10 : oldx0^0'=1-n39+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post2214, oldx3^0'=x3^post2214, oldx4^0'=x4^post2214, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-n39+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, (1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0), cost: 1 -x1^0+x0^0 >= 0 [0]: montonic decrease yields 1-x1^0-n39+x0^0 >= 0 -x1^0+x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -x1^0+x0^0 >= 0) Replacement map: {-x1^0+x0^0 >= 0 -> 1-x1^0-n39+x0^0 >= 0} Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}] Step with 101 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}] Step with 88 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}, {}] Step with 76 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}, {}, {}] Covered Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}, {76[T]}] Step with 138 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}, {76[T]}, {138[T]}] Step with 75 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 75[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}, {76[T]}, {138[T]}, {}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}, {76[T]}, {75[T], 138[T]}] Step with 76 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}, {76[T]}, {75[T], 138[T]}, {}] Covered Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}, {76[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}, {76[T], 138[T]}] Step with 75 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 88[(x1^0-x0^0 <= 0)], 75[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}, {76[T], 138[T]}, {}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}] Step with 143 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {143[T]}] Step with 87 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {143[T]}, {}] Step with 73 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {143[T]}, {}, {}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {143[T]}, {73[T]}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}] Step with 88 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}, {}] Step with 75 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 75[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}, {}, {}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}, {75[T]}] Step with 76 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}, {75[T]}, {}] Covered Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}] Step with 138 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {138[T]}] Step with 75 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 75[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {138[T]}, {}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}] Step with 76 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}] Covered Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T]}, {87[T], 88[T], 143[T]}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T], 143[T]}] Step with 87 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T], 143[T]}, {}] Step with 73 Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T], 143[T]}, {}, {}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {88[T], 143[T]}, {73[T]}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {149[T]}, {87[T], 88[T], 143[T]}] Backtrack Trace 133[T], 132[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {}, {101[T], 149[T]}] Backtrack Trace 133[T], 132[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}] Step with 101 Trace 133[T], 132[T], 101[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {}] Step with 87 Trace 133[T], 132[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {}, {}] Step with 73 Trace 133[T], 132[T], 101[T], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {}, {}, {}] Backtrack Trace 133[T], 132[T], 101[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {}, {73[T]}] Backtrack Trace 133[T], 132[T], 101[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}] Step with 88 Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}, {}] Step with 76 Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}, {}, {}] Covered Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}, {76[T]}] Step with 138 Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}, {76[T]}, {138[T]}] Step with 75 Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 75[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}, {76[T]}, {138[T]}, {}] Backtrack Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}, {76[T]}, {75[T], 138[T]}] Step with 76 Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}, {76[T]}, {75[T], 138[T]}, {}] Covered Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}, {76[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}, {76[T], 138[T]}] Step with 75 Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)], 75[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}, {76[T], 138[T]}, {}] Backtrack Trace 133[T], 132[T], 101[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 132[T], 101[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}] Step with 143 Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {143[T]}] Step with 87 Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {143[T]}, {}] Step with 73 Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {143[T]}, {}, {}] Backtrack Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {143[T]}, {73[T]}] Backtrack Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}] Step with 88 Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}, {}] Step with 75 Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 75[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}, {}, {}] Backtrack Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}, {75[T]}] Step with 76 Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}, {75[T]}, {}] Covered Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}, {75[T], 76[T]}] Step with 138 Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {138[T]}] Step with 75 Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 75[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {138[T]}, {}] Backtrack Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}] Step with 76 Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}] Covered Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 143[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 132[T], 101[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T]}, {87[T], 88[T], 143[T]}] Backtrack Trace 133[T], 132[T], 101[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {149[T]}, {87[T], 88[T], 143[T]}] Backtrack Trace 133[T], 132[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T]}, {101[T], 149[T]}] Backtrack Trace 133[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}] Step with 107 Trace 133[T], 107[T] Blocked [{}, {104[T], 105[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {}] Backtrack Trace 133[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}] Step with 118 Trace 133[T], 118[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {}] Step with 84 Trace 133[T], 118[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}] Step with 81 Trace 133[T], 118[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {}] Backtrack Trace 133[T], 118[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {}, {81[T]}] Backtrack Trace 133[T], 118[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}] Step with 85 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {}] Step with 82 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {}, {}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T]}] Step with 83 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T]}, {}] Step with 86 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T]}, {}, {}] Covered Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T]}, {86[T]}] Step with 142 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T]}, {86[T]}, {142[T]}] Step with 86 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T]}, {86[T]}, {142[T]}, {}] Covered Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T]}, {86[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}] Step with 140 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}, {140[T]}] Step with 82 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}] Step with 86 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {}] Covered Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}] Step with 142 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}] Step with 86 Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {}] Covered Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 118[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 118[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}] Step with 141 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {141[T]}] Step with 84 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {141[T]}, {}] Step with 81 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {141[T]}, {}, {}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {141[T]}, {81[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}] Step with 85 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}] Step with 83 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}, {}] Step with 86 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}, {}, {}] Covered Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}, {86[T]}] Step with 142 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}, {86[T]}, {142[T]}] Step with 86 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}, {86[T]}, {142[T]}, {}] Covered Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}, {86[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}, {86[T], 142[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}] Step with 140 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}, {140[T]}] Step with 82 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}, {}] Step with 86 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}, {}, {}] Covered Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}, {86[T]}] Step with 142 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}] Step with 86 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {}] Covered Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}, {86[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}, {82[T], 140[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T], 140[T]}] Step with 82 Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {83[T], 140[T]}, {}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 118[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 118[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}] Step with 127 Trace 133[T], 127[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {}] Step with 95 Trace 133[T], 127[T], 95[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}] Backtrack Trace 133[T], 127[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 128[T], 129[T], 131[T], 132[T]}, {95[T]}] Backtrack Trace 133[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}] Step with 117 Trace 133[T], 117[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}] Step with 82 Trace 133[T], 117[T], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}] Backtrack Trace 133[T], 117[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}] Step with 83 Trace 133[T], 117[T], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}] Step with 86 Trace 133[T], 117[T], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {}] Step with 85 Trace 133[T], 117[T], 83[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {}, {}] Covered Trace 133[T], 117[T], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T]}] Step with 141 Trace 133[T], 117[T], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T]}, {141[T]}] Step with 84 Trace 133[T], 117[T], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T]}, {141[T]}, {}] Step with 81 Trace 133[T], 117[T], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T]}, {141[T]}, {}, {}] Backtrack Trace 133[T], 117[T], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T]}, {141[T]}, {81[T]}] Backtrack Trace 133[T], 117[T], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T]}, {84[T], 141[T]}] Step with 85 Trace 133[T], 117[T], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T]}, {84[T], 141[T]}, {}] Covered Trace 133[T], 117[T], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 117[T], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T], 141[T]}] Step with 84 Trace 133[T], 117[T], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T], 141[T]}, {}] Step with 81 Trace 133[T], 117[T], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T], 141[T]}, {}, {}] Backtrack Trace 133[T], 117[T], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {85[T], 141[T]}, {81[T]}] Backtrack Trace 133[T], 117[T], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 117[T], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}] Step with 142 Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}] Step with 86 Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {}] Step with 84 Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {}, {}] Step with 81 Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {}, {}, {}] Backtrack Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {}, {81[T]}] Backtrack Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {84[T]}] Step with 85 Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {84[T]}, {}] Covered Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}] Step with 141 Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}] Step with 84 Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {}] Step with 81 Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {}, {}] Backtrack Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {81[T]}] Backtrack Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}] Step with 85 Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}] Covered Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {142[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 117[T], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 117[T], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 117[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}] Step with 140 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {140[T]}] Step with 82 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}] Step with 86 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {}] Step with 85 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {}, {}] Covered Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T]}] Step with 141 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T]}, {141[T]}] Step with 84 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T]}, {141[T]}, {}] Step with 81 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T]}, {141[T]}, {}, {}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T]}, {141[T]}, {81[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T]}, {84[T], 141[T]}] Step with 85 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T]}, {84[T], 141[T]}, {}] Covered Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T], 141[T]}] Step with 84 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T], 141[T]}, {}] Step with 81 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T], 141[T]}, {}, {}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {85[T], 141[T]}, {81[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}] Step with 142 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}] Step with 86 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {}] Step with 84 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {}, {}] Step with 81 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {}, {}, {}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {}, {81[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {84[T]}] Step with 85 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {84[T]}, {}] Covered Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}] Step with 141 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}] Step with 84 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {}] Step with 81 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {}, {}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {81[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}] Step with 85 Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}] Covered Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {142[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 117[T], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 117[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}] Step with 119 Trace 133[T], 119[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}] Step with 86 Trace 133[T], 119[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}] Step with 85 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {}] Step with 83 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {}, {}] Covered Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {83[T]}] Step with 140 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {83[T]}, {140[T]}] Step with 82 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {83[T]}, {82[T], 140[T]}, {}] Covered Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {83[T], 140[T]}] Step with 82 Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {83[T], 140[T]}, {}] Backtrack Trace 133[T], 119[T], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}] Step with 141 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {141[T]}] Step with 84 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {141[T]}, {}] Step with 81 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {141[T]}, {}, {}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {141[T]}, {81[T]}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}] Step with 85 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}, {}] Step with 82 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}, {}, {}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}, {82[T]}] Step with 83 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}, {82[T]}, {}] Covered Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}] Step with 140 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {140[T]}] Step with 82 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}] Covered Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 141[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 119[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T], 141[T]}] Step with 84 Trace 133[T], 119[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T], 141[T]}, {}] Step with 81 Trace 133[T], 119[T], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T], 141[T]}, {}, {}] Backtrack Trace 133[T], 119[T], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {85[T], 141[T]}, {81[T]}] Backtrack Trace 133[T], 119[T], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 119[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}] Step with 142 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}] Step with 86 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {}] Step with 84 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {}, {}] Step with 81 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {}, {}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {}, {81[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}] Step with 85 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}, {}] Step with 83 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}, {}, {}] Covered Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}, {83[T]}] Step with 140 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}, {83[T]}, {140[T]}] Step with 82 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}, {83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}, {83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}, {83[T]}, {82[T], 140[T]}, {}] Covered Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}, {83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}, {83[T], 140[T]}] Step with 82 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}, {83[T], 140[T]}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}] Step with 141 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}] Step with 84 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {}] Step with 81 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)], 81[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 84[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {141[T]}, {81[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}] Step with 85 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}] Step with 82 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T]}] Step with 83 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T]}, {}] Covered Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}] Step with 140 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {140[T]}] Step with 82 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 82[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {140[T]}, {}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 140[T]}] Step with 83 Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)], 83[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 140[T]}, {}] Covered Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)], 140[(-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)], 85[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 141[T]}, {82[T], 83[T], 140[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T], 141[(1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)], 86[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {142[T]}, {84[T], 85[T], 141[T]}] Backtrack Trace 133[T], 119[T], 142[(1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T]}, {86[T], 142[T]}] Backtrack Trace 133[T], 119[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {86[T], 142[T]}] Backtrack Trace 133[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}] Step with 106 Trace 133[T], 106[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}] Step with 72 Trace 133[T], 106[T], 72[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}] Step with 71 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {}] Step with 69 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {}, {}] Covered Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {69[T]}] Step with 135 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {69[T]}, {135[T]}] Step with 68 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {69[T]}, {68[T], 135[T]}, {}] Covered Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {69[T], 135[T]}] Step with 68 Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {69[T], 135[T]}, {}] Backtrack Trace 133[T], 106[T], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 72[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}] Step with 136 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {136[T]}] Step with 70 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {136[T]}, {}] Step with 67 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {136[T]}, {}, {}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {136[T]}, {67[T]}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}] Step with 71 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}, {}] Step with 68 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}, {}, {}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}, {68[T]}] Step with 69 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}, {68[T]}, {}] Covered Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}] Step with 135 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {135[T]}] Step with 68 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}] Covered Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 136[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 106[T], 72[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T], 136[T]}] Step with 70 Trace 133[T], 106[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T], 136[T]}, {}] Step with 67 Trace 133[T], 106[T], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T], 136[T]}, {}, {}] Backtrack Trace 133[T], 106[T], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {71[T], 136[T]}, {67[T]}] Backtrack Trace 133[T], 106[T], 72[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 106[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}] Step with 137 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}] Step with 72 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {}] Step with 70 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {}, {}] Step with 67 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {}, {}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {}, {67[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}] Step with 71 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}, {}] Step with 69 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}, {}, {}] Covered Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}, {69[T]}] Step with 135 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}, {69[T]}, {135[T]}] Step with 68 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}, {69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}, {69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}, {69[T]}, {68[T], 135[T]}, {}] Covered Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}, {69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}, {69[T], 135[T]}] Step with 68 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}, {69[T], 135[T]}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}] Step with 136 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}] Step with 70 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {}] Step with 67 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)], 67[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 70[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {136[T]}, {67[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}] Step with 71 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}] Step with 68 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 68[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T]}] Step with 69 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 69[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T]}, {}] Covered Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}] Step with 135 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {135[T]}] Step with 68 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 68[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {135[T]}, {}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 135[T]}] Step with 69 Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)], 69[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 135[T]}, {}] Covered Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)], 135[(-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)], 71[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 136[T]}, {68[T], 69[T], 135[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T], 136[(-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)], 72[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {137[T]}, {70[T], 71[T], 136[T]}] Backtrack Trace 133[T], 106[T], 137[(1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0)] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T]}, {72[T], 137[T]}] Backtrack Trace 133[T], 106[T] Blocked [{}, {104[T], 105[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {72[T], 137[T]}] Backtrack Trace 133[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}] Step with 114 Trace 133[T], 114[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}] Step with 80 Trace 133[T], 114[T], 80[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}] Step with 79 Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {}] Step with 77 Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {}, {}] Covered Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {77[T]}] Step with 139 Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {77[T]}, {139[T]}] Step with 77 Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {77[T]}, {139[T]}, {}] Covered Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {77[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 114[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {77[T], 139[T]}] Backtrack Trace 133[T], 114[T], 80[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}] Step with 134 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {134[T]}] Step with 78 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {134[T]}, {}] Step with 74 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {134[T]}, {}, {}] Backtrack Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {134[T]}, {74[T]}] Backtrack Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {78[T], 134[T]}] Step with 79 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {78[T], 134[T]}, {}] Step with 77 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {78[T], 134[T]}, {}, {}] Covered Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {78[T], 134[T]}, {77[T]}] Step with 139 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {78[T], 134[T]}, {77[T]}, {139[T]}] Step with 77 Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {78[T], 134[T]}, {77[T]}, {139[T]}, {}] Covered Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {78[T], 134[T]}, {77[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {78[T], 134[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 114[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 114[T], 80[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T], 134[T]}] Step with 78 Trace 133[T], 114[T], 80[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T], 134[T]}, {}] Step with 74 Trace 133[T], 114[T], 80[T], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T], 134[T]}, {}, {}] Backtrack Trace 133[T], 114[T], 80[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {79[T], 134[T]}, {74[T]}] Backtrack Trace 133[T], 114[T], 80[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 114[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {80[T]}] Backtrack Trace 133[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}] Step with 103 Trace 133[T], 103[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}] Step with 67 Trace 133[T], 103[T], 67[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}] Backtrack Trace 133[T], 103[T] Blocked [{}, {104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {67[T]}] Backtrack Trace 133[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}] Step with 115 Trace 133[T], 115[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}] Backtrack Trace 133[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}] Step with 130 Trace 133[T], 130[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}] Step with 100 Trace 133[T], 130[T], 100[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}] Step with 99 Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {}] Step with 96 Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)], 96[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {96[T]}] Step with 97 Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)], 97[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {}, {96[T]}, {}] Accelerate Start location: l31 Program variables: oldx0^0 oldx1^0 oldx2^0 oldx3^0 oldx4^0 oldx5^0 oldx6^0 oldx7^0 oldx8^0 oldx9^0 x0^0 x1^0 x2^0 x3^0 x4^0 67: l0 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post1, oldx6^0'=x1^post1, oldx7^0'=x2^post1, oldx8^0'=x3^post1, oldx9^0'=x4^post1, x0^0'=x0^post1, x1^0'=x1^post1, x2^0'=x2^post1, x3^0'=x3^post1, x4^0'=x4^post1, T, cost: 1 68: l2 -> l1 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post2, oldx6^0'=x1^post2, oldx7^0'=x2^post2, oldx8^0'=x3^post2, oldx9^0'=x4^post2, x0^0'=x0^post2, x1^0'=x1^post2, x2^0'=x2^post2, x3^0'=x3^post2, x4^0'=x4^post2, T, cost: 1 69: l2 -> l3 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=1+x0^0, T, cost: 1 135: l2 -> l2 : oldx0^0'=n2+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n2+x0^0, (-n2+x1^0-x0^0 >= 0 /\ -1+n2 >= 0), cost: 1 72: l3 -> l4 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, T, cost: 1 137: l3 -> l3 : oldx0^0'=-1+n4+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n4+x0^0, (1+x1^0-n4-x0^0 >= 0 /\ -1+n4 >= 0), cost: 1 70: l4 -> l0 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, 1+x1^0-x0^0 <= 0, cost: 1 71: l4 -> l2 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, -x1^0+x0^0 <= 0, cost: 1 136: l4 -> l4 : oldx0^0'=n3+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, x0^0'=n3+x0^0, (-1+n3 >= 0 /\ 1+x1^0-n3-x0^0 >= 0), cost: 1 73: l5 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post7, oldx6^0'=x1^post7, oldx7^0'=x2^post7, oldx8^0'=x3^post7, oldx9^0'=x4^post7, x0^0'=x0^post7, x1^0'=x1^post7, x2^0'=x2^post7, x3^0'=x3^post7, x4^0'=x4^post7, T, cost: 1 74: l7 -> l8 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post8, oldx6^0'=x1^post8, oldx7^0'=x2^post8, oldx8^0'=x3^post8, oldx9^0'=x4^post8, x0^0'=x0^post8, x1^0'=x1^post8, x2^0'=x2^post8, x3^0'=x3^post8, x4^0'=x4^post8, T, cost: 1 75: l9 -> l6 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post9, oldx6^0'=x1^post9, oldx7^0'=x2^post9, oldx8^0'=x3^post9, oldx9^0'=x4^post9, x0^0'=x0^post9, x1^0'=x1^post9, x2^0'=x2^post9, x3^0'=x3^post9, x4^0'=x4^post9, T, cost: 1 76: l9 -> l10 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-1+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, T, cost: 1 138: l9 -> l9 : oldx0^0'=-n5+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post351, oldx3^0'=x3^post351, oldx4^0'=x4^post351, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x0^0'=-n5+x0^0, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, (-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0), cost: 1 101: l10 -> l19 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, T, cost: 1 149: l10 -> l10 : oldx0^0'=1-n39+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post2214, oldx3^0'=x3^post2214, oldx4^0'=x4^post2214, oldx5^0'=x2^post10, oldx6^0'=x3^post10, oldx7^0'=x4^post10, x0^0'=-n39+x0^0, x2^0'=x2^post10, x3^0'=x3^post10, x4^0'=x4^post10, (1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0), cost: 1 77: l11 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=1+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, T, cost: 1 139: l11 -> l11 : oldx0^0'=x0^0, oldx1^0'=n6+x1^0, oldx2^0'=x2^post1110, oldx3^0'=x3^post1110, oldx4^0'=x4^post1110, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x1^0'=n6+x1^0, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, (-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0), cost: 1 78: l12 -> l7 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post12, oldx6^0'=x3^post12, oldx7^0'=x4^post12, x2^0'=x2^post12, x3^0'=x3^post12, x4^0'=x4^post12, -x1^0+x0^0 <= 0, cost: 1 79: l12 -> l11 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post13, oldx6^0'=x3^post13, oldx7^0'=x4^post13, x2^0'=x2^post13, x3^0'=x3^post13, x4^0'=x4^post13, 1+x1^0-x0^0 <= 0, cost: 1 134: l12 -> l12 : oldx0^0'=x0^0, oldx1^0'=-1+n+x1^0, oldx2^0'=x2^post131, oldx3^0'=x3^post131, oldx4^0'=x4^post131, oldx5^0'=x2^post11, oldx6^0'=x3^post11, oldx7^0'=x4^post11, x1^0'=n+x1^0, x2^0'=x2^post11, x3^0'=x3^post11, x4^0'=x4^post11, (-1+n >= 0 /\ -n-x1^0+x0^0 >= 0), cost: 1 80: l13 -> l12 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post14, oldx6^0'=x3^post14, oldx7^0'=x4^post14, x1^0'=0, x2^0'=x2^post14, x3^0'=x3^post14, x4^0'=x4^post14, T, cost: 1 81: l14 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post15, oldx6^0'=x1^post15, oldx7^0'=x2^post15, oldx8^0'=x3^post15, oldx9^0'=x4^post15, x0^0'=x0^post15, x1^0'=x1^post15, x2^0'=x2^post15, x3^0'=x3^post15, x4^0'=x4^post15, T, cost: 1 82: l16 -> l15 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post16, oldx6^0'=x1^post16, oldx7^0'=x2^post16, oldx8^0'=x3^post16, oldx9^0'=x4^post16, x0^0'=x0^post16, x1^0'=x1^post16, x2^0'=x2^post16, x3^0'=x3^post16, x4^0'=x4^post16, T, cost: 1 83: l16 -> l17 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=1+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, T, cost: 1 140: l16 -> l16 : oldx0^0'=n11+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post201, oldx3^0'=x3^post201, oldx4^0'=x4^post201, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x0^0'=n11+x0^0, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, (-n11+x1^0-x0^0 >= 0 /\ -1+n11 >= 0), cost: 1 86: l17 -> l18 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, T, cost: 1 142: l17 -> l17 : oldx0^0'=-1+n13+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post1910, oldx3^0'=x3^post1910, oldx4^0'=x4^post1910, oldx5^0'=x2^post17, oldx6^0'=x3^post17, oldx7^0'=x4^post17, x0^0'=n13+x0^0, x2^0'=x2^post17, x3^0'=x3^post17, x4^0'=x4^post17, (1+x1^0-n13-x0^0 >= 0 /\ -1+n13 >= 0), cost: 1 84: l18 -> l14 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post18, oldx6^0'=x3^post18, oldx7^0'=x4^post18, x2^0'=x2^post18, x3^0'=x3^post18, x4^0'=x4^post18, 1+x1^0-x0^0 <= 0, cost: 1 85: l18 -> l16 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post19, oldx6^0'=x3^post19, oldx7^0'=x4^post19, x2^0'=x2^post19, x3^0'=x3^post19, x4^0'=x4^post19, -x1^0+x0^0 <= 0, cost: 1 141: l18 -> l18 : oldx0^0'=n12+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post174, oldx3^0'=x3^post174, oldx4^0'=x4^post174, oldx5^0'=x2^post20, oldx6^0'=x3^post20, oldx7^0'=x4^post20, x0^0'=n12+x0^0, x2^0'=x2^post20, x3^0'=x3^post20, x4^0'=x4^post20, (1-n12+x1^0-x0^0 >= 0 /\ -1+n12 >= 0), cost: 1 87: l19 -> l5 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post21, oldx6^0'=x3^post21, oldx7^0'=x4^post21, x2^0'=x2^post21, x3^0'=x3^post21, x4^0'=x4^post21, 1-x1^0+x0^0 <= 0, cost: 1 88: l19 -> l9 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x2^post22, oldx6^0'=x3^post22, oldx7^0'=x4^post22, x2^0'=x2^post22, x3^0'=x3^post22, x4^0'=x4^post22, x1^0-x0^0 <= 0, cost: 1 143: l19 -> l19 : oldx0^0'=-n14+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^post104, oldx3^0'=x3^post104, oldx4^0'=x4^post104, oldx5^0'=x2^post35, oldx6^0'=x3^post35, oldx7^0'=x4^post35, x0^0'=-n14+x0^0, x2^0'=x2^post35, x3^0'=x3^post35, x4^0'=x4^post35, (-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0), cost: 1 89: l20 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post23, oldx6^0'=x1^post23, oldx7^0'=x2^post23, oldx8^0'=x3^post23, oldx9^0'=x4^post23, x0^0'=x0^post23, x1^0'=x1^post23, x2^0'=x2^post23, x3^0'=x3^post23, x4^0'=x4^post23, T, cost: 1 90: l22 -> l21 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post24, oldx6^0'=x1^post24, oldx7^0'=x2^post24, oldx8^0'=x3^post24, oldx9^0'=x4^post24, x0^0'=x0^post24, x1^0'=x1^post24, x2^0'=x2^post24, x3^0'=x3^post24, x4^0'=x4^post24, T, cost: 1 91: l22 -> l23 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=1+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, T, cost: 1 145: l22 -> l22 : oldx0^0'=n19+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post281, oldx4^0'=x4^post281, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x0^0'=n19+x0^0, x3^0'=x3^post27, x4^0'=x4^post27, (-1+n19 >= 0 /\ -n19+x1^0-x0^0 >= 0), cost: 1 94: l23 -> l24 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x3^0'=x3^post28, x4^0'=x4^post28, T, cost: 1 147: l23 -> l23 : oldx0^0'=-1+n28+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post2710, oldx4^0'=x4^post2710, oldx5^0'=x3^post25, oldx6^0'=x4^post25, x0^0'=n28+x0^0, x3^0'=x3^post25, x4^0'=x4^post25, (-1+n28 >= 0 /\ 1+x1^0-n28-x0^0 >= 0), cost: 1 92: l24 -> l20 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post26, oldx6^0'=x4^post26, x3^0'=x3^post26, x4^0'=x4^post26, 1+x1^0-x0^0 <= 0, cost: 1 93: l24 -> l22 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x3^post27, oldx6^0'=x4^post27, x3^0'=x3^post27, x4^0'=x4^post27, -x1^0+x0^0 <= 0, cost: 1 146: l24 -> l24 : oldx0^0'=n20+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^post254, oldx4^0'=x4^post254, oldx5^0'=x3^post28, oldx6^0'=x4^post28, x0^0'=n20+x0^0, x3^0'=x3^post28, x4^0'=x4^post28, (1-n20+x1^0-x0^0 >= 0 /\ -1+n20 >= 0), cost: 1 95: l25 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post29, oldx6^0'=x1^post29, oldx7^0'=x2^post29, oldx8^0'=x3^post29, oldx9^0'=x4^post29, x0^0'=x0^post29, x1^0'=x1^post29, x2^0'=x2^post29, x3^0'=x3^post29, x4^0'=x4^post29, T, cost: 1 96: l27 -> l26 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x0^post30, oldx6^0'=x1^post30, oldx7^0'=x2^post30, oldx8^0'=x3^post30, oldx9^0'=x4^post30, x0^0'=x0^post30, x1^0'=x1^post30, x2^0'=x2^post30, x3^0'=x3^post30, x4^0'=x4^post30, T, cost: 1 97: l27 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, T, cost: 1 148: l27 -> l27 : oldx0^0'=-n30+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post345, oldx5^0'=x4^post33, x0^0'=-n30+x0^0, x4^0'=x4^post33, (-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0), cost: 1 100: l28 -> l29 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post34, x4^0'=x4^post34, T, cost: 1 150: l28 -> l28 : oldx0^0'=1-n49+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post3310, oldx5^0'=x4^post31, x0^0'=-n49+x0^0, x4^0'=x4^post31, (-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0), cost: 1 98: l29 -> l25 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post32, x4^0'=x4^post32, 1-x1^0+x0^0 <= 0, cost: 1 99: l29 -> l27 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x4^post33, x4^0'=x4^post33, x1^0-x0^0 <= 0, cost: 1 144: l29 -> l29 : oldx0^0'=-n15+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post311, oldx5^0'=x4^post34, x0^0'=-n15+x0^0, x4^0'=x4^post34, (-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0), cost: 1 102: l30 -> l13 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^0, oldx5^0'=x1^post36, oldx6^0'=x2^post36, oldx7^0'=x3^post36, oldx8^0'=x4^post36, x1^0'=x1^post36, x2^0'=x2^post36, x3^0'=x3^post36, x4^0'=x4^post36, T, cost: 1 103: l30 -> l0 : T, cost: 1 104: l30 -> l2 : T, cost: 1 105: l30 -> l4 : T, cost: 1 106: l30 -> l3 : T, cost: 1 107: l30 -> l6 : T, cost: 1 108: l30 -> l5 : T, cost: 1 109: l30 -> l8 : T, cost: 1 110: l30 -> l7 : T, cost: 1 111: l30 -> l9 : T, cost: 1 112: l30 -> l11 : T, cost: 1 113: l30 -> l12 : T, cost: 1 114: l30 -> l13 : T, cost: 1 115: l30 -> l15 : T, cost: 1 116: l30 -> l14 : T, cost: 1 117: l30 -> l16 : T, cost: 1 118: l30 -> l18 : T, cost: 1 119: l30 -> l17 : T, cost: 1 120: l30 -> l21 : T, cost: 1 121: l30 -> l19 : T, cost: 1 122: l30 -> l20 : T, cost: 1 123: l30 -> l22 : T, cost: 1 124: l30 -> l24 : T, cost: 1 125: l30 -> l23 : T, cost: 1 126: l30 -> l26 : T, cost: 1 127: l30 -> l25 : T, cost: 1 128: l30 -> l27 : T, cost: 1 129: l30 -> l29 : T, cost: 1 130: l30 -> l28 : T, cost: 1 131: l30 -> l1 : T, cost: 1 132: l30 -> l10 : T, cost: 1 133: l31 -> l30 : T, cost: 1 Loop Acceleration Original rule: l28 -> l28 : oldx0^0'=x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post3310, oldx5^0'=x4^post31, x0^0'=-1+x0^0, x4^0'=x4^post31, x1^0-x0^0 <= 0, cost: 1 New rule: l28 -> l28 : oldx0^0'=1-n49+x0^0, oldx1^0'=x1^0, oldx2^0'=x2^0, oldx3^0'=x3^0, oldx4^0'=x4^post3310, oldx5^0'=x4^post31, x0^0'=-n49+x0^0, x4^0'=x4^post31, (-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0), cost: 1 -x1^0+x0^0 >= 0 [0]: montonic decrease yields 1-x1^0-n49+x0^0 >= 0 -x1^0+x0^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -x1^0+x0^0 >= 0) Replacement map: {-x1^0+x0^0 >= 0 -> 1-x1^0-n49+x0^0 >= 0} Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}] Step with 100 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}] Step with 99 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}, {}] Step with 97 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 99[(x1^0-x0^0 <= 0)], 97[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}, {}, {}] Covered Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}, {97[T]}] Step with 148 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}, {97[T]}, {148[T]}] Step with 96 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 96[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}, {97[T]}, {148[T]}, {}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}, {97[T]}, {96[T], 148[T]}] Step with 97 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}, {97[T]}, {96[T], 148[T]}, {}] Covered Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}, {97[T]}, {96[T], 97[T], 148[T]}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}, {97[T], 148[T]}] Step with 96 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 99[(x1^0-x0^0 <= 0)], 96[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}, {97[T], 148[T]}, {}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {}, {96[T], 97[T], 148[T]}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}] Step with 144 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {144[T]}] Step with 98 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {144[T]}, {}] Step with 95 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)], 95[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {144[T]}, {}, {}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {144[T]}, {95[T]}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}] Step with 99 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}, {}] Step with 96 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 96[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}, {}, {}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}, {96[T]}] Step with 97 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 97[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}, {96[T]}, {}] Covered Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}, {96[T], 97[T]}] Step with 148 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}, {96[T], 97[T]}, {148[T]}] Step with 96 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 96[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}, {96[T], 97[T]}, {148[T]}, {}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}, {96[T], 97[T]}, {96[T], 148[T]}] Step with 97 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}, {96[T], 97[T]}, {96[T], 148[T]}, {}] Covered Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}, {96[T], 97[T]}, {96[T], 97[T], 148[T]}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 144[T]}, {96[T], 97[T], 148[T]}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T]}, {98[T], 99[T], 144[T]}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T], 144[T]}] Step with 98 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T], 144[T]}, {}] Step with 95 Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 98[(1-x1^0+x0^0 <= 0)], 95[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T], 144[T]}, {}, {}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {99[T], 144[T]}, {95[T]}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)], 100[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {150[T]}, {98[T], 99[T], 144[T]}] Backtrack Trace 133[T], 130[T], 150[(-1+n49 >= 0 /\ 1-x1^0-n49+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {}, {100[T], 150[T]}] Backtrack Trace 133[T], 130[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}] Step with 100 Trace 133[T], 130[T], 100[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {}] Step with 98 Trace 133[T], 130[T], 100[T], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {}, {}] Step with 95 Trace 133[T], 130[T], 100[T], 98[(1-x1^0+x0^0 <= 0)], 95[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {}, {}, {}] Backtrack Trace 133[T], 130[T], 100[T], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {}, {95[T]}] Backtrack Trace 133[T], 130[T], 100[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}] Step with 99 Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}, {}] Step with 97 Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)], 97[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}, {}, {}] Covered Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}, {97[T]}] Step with 148 Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}, {97[T]}, {148[T]}] Step with 96 Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 96[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}, {97[T]}, {148[T]}, {}] Backtrack Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}, {97[T]}, {96[T], 148[T]}] Step with 97 Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}, {97[T]}, {96[T], 148[T]}, {}] Covered Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}, {97[T]}, {96[T], 97[T], 148[T]}] Backtrack Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}, {97[T], 148[T]}] Step with 96 Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)], 96[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}, {97[T], 148[T]}, {}] Backtrack Trace 133[T], 130[T], 100[T], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T]}, {96[T], 97[T], 148[T]}] Backtrack Trace 133[T], 130[T], 100[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}] Step with 144 Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {144[T]}] Step with 98 Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {144[T]}, {}] Step with 95 Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)], 95[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {144[T]}, {}, {}] Backtrack Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 98[(1-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {144[T]}, {95[T]}] Backtrack Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}] Step with 99 Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}, {}] Step with 96 Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 96[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}, {}, {}] Backtrack Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}, {96[T]}] Step with 97 Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 97[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}, {96[T]}, {}] Covered Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}, {96[T], 97[T]}] Step with 148 Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}, {96[T], 97[T]}, {148[T]}] Step with 96 Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 96[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}, {96[T], 97[T]}, {148[T]}, {}] Backtrack Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}, {96[T], 97[T]}, {96[T], 148[T]}] Step with 97 Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)], 97[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}, {96[T], 97[T]}, {96[T], 148[T]}, {}] Covered Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)], 148[(-x1^0-n30+x0^0 >= 0 /\ -1+n30 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}, {96[T], 97[T]}, {96[T], 97[T], 148[T]}] Backtrack Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)], 99[(x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 144[T]}, {96[T], 97[T], 148[T]}] Backtrack Trace 133[T], 130[T], 100[T], 144[(-1+n15 >= 0 /\ 1-n15-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T]}, {98[T], 99[T], 144[T]}] Backtrack Trace 133[T], 130[T], 100[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {150[T]}, {98[T], 99[T], 144[T]}] Backtrack Trace 133[T], 130[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 131[T], 132[T]}, {100[T], 150[T]}] Backtrack Trace 133[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}] Step with 102 Trace 133[T], 102[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}] Step with 80 Trace 133[T], 102[T], 80[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}] Step with 78 Trace 133[T], 102[T], 80[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}, {}] Step with 74 Trace 133[T], 102[T], 80[T], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}, {}, {}] Backtrack Trace 133[T], 102[T], 80[T], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}, {74[T]}] Backtrack Trace 133[T], 102[T], 80[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T]}] Step with 79 Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T]}, {}] Step with 77 Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T]}, {}, {}] Covered Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T]}, {77[T]}] Step with 139 Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T]}, {77[T]}, {139[T]}] Step with 77 Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T]}, {77[T]}, {139[T]}, {}] Covered Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T]}, {77[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 102[T], 80[T], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 102[T], 80[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}] Step with 134 Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {134[T]}] Step with 78 Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {134[T]}, {}] Step with 74 Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)], 74[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {134[T]}, {}, {}] Backtrack Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 78[(-x1^0+x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {134[T]}, {74[T]}] Backtrack Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}] Step with 79 Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {}] Step with 77 Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 77[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {}, {}] Covered Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}] Step with 139 Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}, {139[T]}] Step with 77 Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)], 77[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}, {139[T]}, {}] Covered Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)], 139[(-1+n6 >= 0 /\ -1-n6-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)], 79[(1+x1^0-x0^0 <= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {78[T], 134[T]}, {77[T], 139[T]}] Backtrack Trace 133[T], 102[T], 80[T], 134[(-1+n >= 0 /\ -n-x1^0+x0^0 >= 0)] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T]}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 102[T], 80[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {78[T], 79[T], 134[T]}] Backtrack Trace 133[T], 102[T] Blocked [{}, {103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {80[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}] Step with 121 Trace 133[T], 121[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}] Step with 88 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}] Step with 76 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}, {}] Step with 101 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}, {}, {}] Covered Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}, {101[T]}] Step with 149 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}, {101[T]}, {149[T]}] Step with 101 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}, {101[T]}, {149[T]}, {}] Covered Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}, {101[T]}, {101[T], 149[T]}] Backtrack Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {}, {101[T], 149[T]}] Backtrack Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}] Step with 138 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}, {138[T]}] Step with 75 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 75[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}, {138[T]}, {}] Backtrack Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}, {75[T], 138[T]}] Step with 76 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}, {75[T], 138[T]}, {}] Step with 101 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}, {75[T], 138[T]}, {}, {}] Covered Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}, {75[T], 138[T]}, {101[T]}] Step with 149 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}, {75[T], 138[T]}, {101[T]}, {149[T]}] Step with 101 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}, {75[T], 138[T]}, {101[T]}, {149[T]}, {}] Covered Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}, {75[T], 138[T]}, {101[T]}, {101[T], 149[T]}] Backtrack Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}, {75[T], 138[T]}, {101[T], 149[T]}] Backtrack Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T], 138[T]}] Step with 75 Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)], 75[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {76[T], 138[T]}, {}] Backtrack Trace 133[T], 121[T], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 121[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}] Step with 143 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {143[T]}] Step with 87 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {143[T]}, {}] Step with 73 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {143[T]}, {}, {}] Backtrack Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {143[T]}, {73[T]}] Backtrack Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}] Step with 88 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {}] Step with 75 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 75[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {}, {}] Backtrack Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T]}] Step with 76 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T]}, {}] Step with 101 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T]}, {}, {}] Covered Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T]}, {101[T]}] Step with 149 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T]}, {101[T]}, {149[T]}] Step with 101 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T]}, {101[T]}, {149[T]}, {}] Covered Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T]}, {101[T]}, {101[T], 149[T]}] Backtrack Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T]}, {101[T], 149[T]}] Backtrack Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}] Step with 138 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {138[T]}] Step with 75 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 75[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {138[T]}, {}] Backtrack Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}] Step with 76 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}] Step with 101 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {}, {}] Covered Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {101[T]}] Step with 149 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {101[T]}, {149[T]}] Step with 101 Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)], 101[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {101[T]}, {149[T]}, {}] Covered Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T], 149[(1-x1^0-n39+x0^0 >= 0 /\ -1+n39 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {101[T]}, {101[T], 149[T]}] Backtrack Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)], 76[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 138[T]}, {101[T], 149[T]}] Backtrack Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)], 138[(-1+n5 >= 0 /\ -x1^0-n5+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)], 88[(x1^0-x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 143[T]}, {75[T], 76[T], 138[T]}] Backtrack Trace 133[T], 121[T], 143[(-1+n14 >= 0 /\ 1-n14-x1^0+x0^0 >= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T]}, {87[T], 88[T], 143[T]}] Backtrack Trace 133[T], 121[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T], 143[T]}] Step with 87 Trace 133[T], 121[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T], 143[T]}, {}] Step with 73 Trace 133[T], 121[T], 87[(1-x1^0+x0^0 <= 0)], 73[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T], 143[T]}, {}, {}] Backtrack Trace 133[T], 121[T], 87[(1-x1^0+x0^0 <= 0)] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {88[T], 143[T]}, {73[T]}] Backtrack Trace 133[T], 121[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}, {87[T], 88[T], 143[T]}] Backtrack Trace 133[T] Blocked [{}, {102[T], 103[T], 104[T], 105[T], 106[T], 107[T], 108[T], 109[T], 110[T], 111[T], 112[T], 113[T], 114[T], 115[T], 116[T], 117[T], 118[T], 119[T], 120[T], 121[T], 122[T], 123[T], 124[T], 125[T], 126[T], 127[T], 128[T], 129[T], 130[T], 131[T], 132[T]}] Backtrack Trace Blocked [{133[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b