NO Initial ITS Start location: l4 Program variables: cnt_15^0 lt_9^0 p_8^0 result_4^0 x_5^0 y_6^0 z_7^0 0: l0 -> l1 : cnt_15^0'=cnt_15^post1, lt_9^0'=lt_9^post1, p_8^0'=p_8^post1, result_4^0'=result_4^post1, x_5^0'=x_5^post1, y_6^0'=y_6^post1, z_7^0'=z_7^post1, (0 == 0 /\ -y_6^post1+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ z_7^0-z_7^post1 == 0 /\ -p_8^post1+p_8^0 == 0 /\ -cnt_15^post1+cnt_15^0 == 0 /\ lt_9^0-lt_9^post1 == 0 /\ -x_5^post1+x_5^0 == 0), cost: 1 1: l0 -> l2 : cnt_15^0'=cnt_15^post2, lt_9^0'=lt_9^post2, p_8^0'=p_8^post2, result_4^0'=result_4^post2, x_5^0'=x_5^post2, y_6^0'=y_6^post2, z_7^0'=z_7^post2, (0 == 0 /\ lt_9^1-cnt_15^0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ z_7^0-z_7^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -p_8^post2+p_8^0 == 0 /\ cnt_15^0-cnt_15^post2 == 0 /\ -x_5^post2+x_5^0 == 0 /\ result_4^0-result_4^post2 == 0), cost: 1 2: l2 -> l0 : cnt_15^0'=cnt_15^post3, lt_9^0'=lt_9^post3, p_8^0'=p_8^post3, result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, z_7^0'=z_7^post3, (-y_6^post3+y_6^0 == 0 /\ lt_9^0-lt_9^post3 == 0 /\ -p_8^post3+p_8^0 == 0 /\ z_7^0-z_7^post3 == 0 /\ -x_5^post3+x_5^0 == 0 /\ cnt_15^0-cnt_15^post3 == 0 /\ result_4^0-result_4^post3 == 0), cost: 1 3: l3 -> l0 : cnt_15^0'=cnt_15^post4, lt_9^0'=lt_9^post4, p_8^0'=p_8^post4, result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, z_7^0'=z_7^post4, (0 == 0 /\ -x_5^post4+x_5^0 == 0 /\ -y_6^post4+y_6^0 == 0 /\ p_8^post4-z_7^post4 == 0 /\ lt_9^0-lt_9^post4 == 0 /\ -cnt_15^post4+cnt_15^0 == 0 /\ -result_4^post4+result_4^0 == 0), cost: 1 4: l4 -> l3 : cnt_15^0'=cnt_15^post5, lt_9^0'=lt_9^post5, p_8^0'=p_8^post5, result_4^0'=result_4^post5, x_5^0'=x_5^post5, y_6^0'=y_6^post5, z_7^0'=z_7^post5, (-cnt_15^post5+cnt_15^0 == 0 /\ -x_5^post5+x_5^0 == 0 /\ z_7^0-z_7^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -result_4^post5+result_4^0 == 0 /\ p_8^0-p_8^post5 == 0 /\ lt_9^0-lt_9^post5 == 0), cost: 1 Chained Linear Paths Start location: l4 Program variables: cnt_15^0 lt_9^0 p_8^0 result_4^0 x_5^0 y_6^0 z_7^0 0: l0 -> l1 : cnt_15^0'=cnt_15^post1, lt_9^0'=lt_9^post1, p_8^0'=p_8^post1, result_4^0'=result_4^post1, x_5^0'=x_5^post1, y_6^0'=y_6^post1, z_7^0'=z_7^post1, (0 == 0 /\ -y_6^post1+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ z_7^0-z_7^post1 == 0 /\ -p_8^post1+p_8^0 == 0 /\ -cnt_15^post1+cnt_15^0 == 0 /\ lt_9^0-lt_9^post1 == 0 /\ -x_5^post1+x_5^0 == 0), cost: 1 6: l0 -> l0 : cnt_15^0'=cnt_15^post3, lt_9^0'=lt_9^post3, p_8^0'=p_8^post3, result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, z_7^0'=z_7^post3, (0 == 0 /\ lt_9^1-cnt_15^0 == 0 /\ cnt_15^post2-cnt_15^post3 == 0 /\ y_6^post2-y_6^post3 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ lt_9^post2-lt_9^post3 == 0 /\ z_7^0-z_7^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ p_8^post2-p_8^post3 == 0 /\ z_7^post2-z_7^post3 == 0 /\ -p_8^post2+p_8^0 == 0 /\ result_4^post2-result_4^post3 == 0 /\ x_5^post2-x_5^post3 == 0 /\ cnt_15^0-cnt_15^post2 == 0 /\ -x_5^post2+x_5^0 == 0 /\ result_4^0-result_4^post2 == 0), cost: 1 5: l4 -> l0 : cnt_15^0'=cnt_15^post4, lt_9^0'=lt_9^post4, p_8^0'=p_8^post4, result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, z_7^0'=z_7^post4, (0 == 0 /\ -cnt_15^post5+cnt_15^0 == 0 /\ -x_5^post5+x_5^0 == 0 /\ -x_5^post4+x_5^post5 == 0 /\ z_7^0-z_7^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -y_6^post4+y_6^post5 == 0 /\ p_8^post4-z_7^post4 == 0 /\ -result_4^post5+result_4^0 == 0 /\ -result_4^post4+result_4^post5 == 0 /\ -cnt_15^post4+cnt_15^post5 == 0 /\ p_8^0-p_8^post5 == 0 /\ lt_9^0-lt_9^post5 == 0 /\ -lt_9^post4+lt_9^post5 == 0), cost: 1 Eliminating location l3 by chaining: Applied chaining First rule: l4 -> l3 : cnt_15^0'=cnt_15^post5, lt_9^0'=lt_9^post5, p_8^0'=p_8^post5, result_4^0'=result_4^post5, x_5^0'=x_5^post5, y_6^0'=y_6^post5, z_7^0'=z_7^post5, (-cnt_15^post5+cnt_15^0 == 0 /\ -x_5^post5+x_5^0 == 0 /\ z_7^0-z_7^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -result_4^post5+result_4^0 == 0 /\ p_8^0-p_8^post5 == 0 /\ lt_9^0-lt_9^post5 == 0), cost: 1 Second rule: l3 -> l0 : cnt_15^0'=cnt_15^post4, lt_9^0'=lt_9^post4, p_8^0'=p_8^post4, result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, z_7^0'=z_7^post4, (0 == 0 /\ -x_5^post4+x_5^0 == 0 /\ -y_6^post4+y_6^0 == 0 /\ p_8^post4-z_7^post4 == 0 /\ lt_9^0-lt_9^post4 == 0 /\ -cnt_15^post4+cnt_15^0 == 0 /\ -result_4^post4+result_4^0 == 0), cost: 1 New rule: l4 -> l0 : cnt_15^0'=cnt_15^post4, lt_9^0'=lt_9^post4, p_8^0'=p_8^post4, result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, z_7^0'=z_7^post4, (0 == 0 /\ -cnt_15^post5+cnt_15^0 == 0 /\ -x_5^post5+x_5^0 == 0 /\ -x_5^post4+x_5^post5 == 0 /\ z_7^0-z_7^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -y_6^post4+y_6^post5 == 0 /\ p_8^post4-z_7^post4 == 0 /\ -result_4^post5+result_4^0 == 0 /\ -result_4^post4+result_4^post5 == 0 /\ -cnt_15^post4+cnt_15^post5 == 0 /\ p_8^0-p_8^post5 == 0 /\ lt_9^0-lt_9^post5 == 0 /\ -lt_9^post4+lt_9^post5 == 0), cost: 1 Applied deletion Removed the following rules: 3 4 Eliminating location l2 by chaining: Applied chaining First rule: l0 -> l2 : cnt_15^0'=cnt_15^post2, lt_9^0'=lt_9^post2, p_8^0'=p_8^post2, result_4^0'=result_4^post2, x_5^0'=x_5^post2, y_6^0'=y_6^post2, z_7^0'=z_7^post2, (0 == 0 /\ lt_9^1-cnt_15^0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ z_7^0-z_7^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -p_8^post2+p_8^0 == 0 /\ cnt_15^0-cnt_15^post2 == 0 /\ -x_5^post2+x_5^0 == 0 /\ result_4^0-result_4^post2 == 0), cost: 1 Second rule: l2 -> l0 : cnt_15^0'=cnt_15^post3, lt_9^0'=lt_9^post3, p_8^0'=p_8^post3, result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, z_7^0'=z_7^post3, (-y_6^post3+y_6^0 == 0 /\ lt_9^0-lt_9^post3 == 0 /\ -p_8^post3+p_8^0 == 0 /\ z_7^0-z_7^post3 == 0 /\ -x_5^post3+x_5^0 == 0 /\ cnt_15^0-cnt_15^post3 == 0 /\ result_4^0-result_4^post3 == 0), cost: 1 New rule: l0 -> l0 : cnt_15^0'=cnt_15^post3, lt_9^0'=lt_9^post3, p_8^0'=p_8^post3, result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, z_7^0'=z_7^post3, (0 == 0 /\ lt_9^1-cnt_15^0 == 0 /\ cnt_15^post2-cnt_15^post3 == 0 /\ y_6^post2-y_6^post3 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ lt_9^post2-lt_9^post3 == 0 /\ z_7^0-z_7^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ p_8^post2-p_8^post3 == 0 /\ z_7^post2-z_7^post3 == 0 /\ -p_8^post2+p_8^0 == 0 /\ result_4^post2-result_4^post3 == 0 /\ x_5^post2-x_5^post3 == 0 /\ cnt_15^0-cnt_15^post2 == 0 /\ -x_5^post2+x_5^0 == 0 /\ result_4^0-result_4^post2 == 0), cost: 1 Applied deletion Removed the following rules: 1 2 Simplified Transitions Start location: l4 Program variables: lt_9^0 p_8^0 result_4^0 x_5^0 y_6^0 z_7^0 7: l0 -> l1 : result_4^0'=result_4^post1, -x_5^0+y_6^0 <= 0, cost: 1 9: l0 -> l0 : lt_9^0'=lt_9^post2, 1+x_5^0-y_6^0 <= 0, cost: 1 8: l4 -> l0 : p_8^0'=z_7^post4, z_7^0'=z_7^post4, T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : cnt_15^0'=cnt_15^post1, lt_9^0'=lt_9^post1, p_8^0'=p_8^post1, result_4^0'=result_4^post1, x_5^0'=x_5^post1, y_6^0'=y_6^post1, z_7^0'=z_7^post1, (0 == 0 /\ -y_6^post1+y_6^0 == 0 /\ -x_5^0+y_6^0 <= 0 /\ z_7^0-z_7^post1 == 0 /\ -p_8^post1+p_8^0 == 0 /\ -cnt_15^post1+cnt_15^0 == 0 /\ lt_9^0-lt_9^post1 == 0 /\ -x_5^post1+x_5^0 == 0), cost: 1 New rule: l0 -> l1 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^0, p_8^0'=p_8^0, result_4^0'=result_4^post1, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^0, (0 == 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 propagated equality y_6^post1 = y_6^0 propagated equality z_7^post1 = z_7^0 propagated equality p_8^post1 = p_8^0 propagated equality cnt_15^post1 = cnt_15^0 propagated equality lt_9^post1 = lt_9^0 propagated equality x_5^post1 = x_5^0 Simplified Guard Original rule: l0 -> l1 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^0, p_8^0'=p_8^0, result_4^0'=result_4^post1, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^0, (0 == 0 /\ -x_5^0+y_6^0 <= 0), cost: 1 New rule: l0 -> l1 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^0, p_8^0'=p_8^0, result_4^0'=result_4^post1, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^0, -x_5^0+y_6^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^0, p_8^0'=p_8^0, result_4^0'=result_4^post1, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^0, -x_5^0+y_6^0 <= 0, cost: 1 New rule: l0 -> l1 : result_4^0'=result_4^post1, -x_5^0+y_6^0 <= 0, cost: 1 Propagated Equalities Original rule: l4 -> l0 : cnt_15^0'=cnt_15^post4, lt_9^0'=lt_9^post4, p_8^0'=p_8^post4, result_4^0'=result_4^post4, x_5^0'=x_5^post4, y_6^0'=y_6^post4, z_7^0'=z_7^post4, (0 == 0 /\ -cnt_15^post5+cnt_15^0 == 0 /\ -x_5^post5+x_5^0 == 0 /\ -x_5^post4+x_5^post5 == 0 /\ z_7^0-z_7^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -y_6^post4+y_6^post5 == 0 /\ p_8^post4-z_7^post4 == 0 /\ -result_4^post5+result_4^0 == 0 /\ -result_4^post4+result_4^post5 == 0 /\ -cnt_15^post4+cnt_15^post5 == 0 /\ p_8^0-p_8^post5 == 0 /\ lt_9^0-lt_9^post5 == 0 /\ -lt_9^post4+lt_9^post5 == 0), cost: 1 New rule: l4 -> l0 : cnt_15^0'=cnt_15^post5, lt_9^0'=lt_9^post5, p_8^0'=z_7^post4, result_4^0'=result_4^post5, x_5^0'=x_5^post5, y_6^0'=y_6^post5, z_7^0'=z_7^post4, (0 == 0 /\ -cnt_15^post5+cnt_15^0 == 0 /\ -x_5^post5+x_5^0 == 0 /\ z_7^0-z_7^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -result_4^post5+result_4^0 == 0 /\ p_8^0-p_8^post5 == 0 /\ lt_9^0-lt_9^post5 == 0), cost: 1 propagated equality x_5^post4 = x_5^post5 propagated equality y_6^post4 = y_6^post5 propagated equality p_8^post4 = z_7^post4 propagated equality result_4^post4 = result_4^post5 propagated equality cnt_15^post4 = cnt_15^post5 propagated equality lt_9^post4 = lt_9^post5 Propagated Equalities Original rule: l4 -> l0 : cnt_15^0'=cnt_15^post5, lt_9^0'=lt_9^post5, p_8^0'=z_7^post4, result_4^0'=result_4^post5, x_5^0'=x_5^post5, y_6^0'=y_6^post5, z_7^0'=z_7^post4, (0 == 0 /\ -cnt_15^post5+cnt_15^0 == 0 /\ -x_5^post5+x_5^0 == 0 /\ z_7^0-z_7^post5 == 0 /\ -y_6^post5+y_6^0 == 0 /\ -result_4^post5+result_4^0 == 0 /\ p_8^0-p_8^post5 == 0 /\ lt_9^0-lt_9^post5 == 0), cost: 1 New rule: l4 -> l0 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^0, p_8^0'=z_7^post4, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^post4, 0 == 0, cost: 1 propagated equality cnt_15^post5 = cnt_15^0 propagated equality x_5^post5 = x_5^0 propagated equality z_7^post5 = z_7^0 propagated equality y_6^post5 = y_6^0 propagated equality result_4^post5 = result_4^0 propagated equality p_8^post5 = p_8^0 propagated equality lt_9^post5 = lt_9^0 Simplified Guard Original rule: l4 -> l0 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^0, p_8^0'=z_7^post4, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^post4, 0 == 0, cost: 1 New rule: l4 -> l0 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^0, p_8^0'=z_7^post4, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^post4, T, cost: 1 Removed Trivial Updates Original rule: l4 -> l0 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^0, p_8^0'=z_7^post4, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^post4, T, cost: 1 New rule: l4 -> l0 : p_8^0'=z_7^post4, z_7^0'=z_7^post4, T, cost: 1 Propagated Equalities Original rule: l0 -> l0 : cnt_15^0'=cnt_15^post3, lt_9^0'=lt_9^post3, p_8^0'=p_8^post3, result_4^0'=result_4^post3, x_5^0'=x_5^post3, y_6^0'=y_6^post3, z_7^0'=z_7^post3, (0 == 0 /\ lt_9^1-cnt_15^0 == 0 /\ cnt_15^post2-cnt_15^post3 == 0 /\ y_6^post2-y_6^post3 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ lt_9^post2-lt_9^post3 == 0 /\ z_7^0-z_7^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ p_8^post2-p_8^post3 == 0 /\ z_7^post2-z_7^post3 == 0 /\ -p_8^post2+p_8^0 == 0 /\ result_4^post2-result_4^post3 == 0 /\ x_5^post2-x_5^post3 == 0 /\ cnt_15^0-cnt_15^post2 == 0 /\ -x_5^post2+x_5^0 == 0 /\ result_4^0-result_4^post2 == 0), cost: 1 New rule: l0 -> l0 : cnt_15^0'=cnt_15^post2, lt_9^0'=lt_9^post2, p_8^0'=p_8^post2, result_4^0'=result_4^post2, x_5^0'=x_5^post2, y_6^0'=y_6^post2, z_7^0'=z_7^post2, (0 == 0 /\ lt_9^1-cnt_15^0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ z_7^0-z_7^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -p_8^post2+p_8^0 == 0 /\ cnt_15^0-cnt_15^post2 == 0 /\ -x_5^post2+x_5^0 == 0 /\ result_4^0-result_4^post2 == 0), cost: 1 propagated equality cnt_15^post3 = cnt_15^post2 propagated equality y_6^post3 = y_6^post2 propagated equality lt_9^post3 = lt_9^post2 propagated equality p_8^post3 = p_8^post2 propagated equality z_7^post3 = z_7^post2 propagated equality result_4^post3 = result_4^post2 propagated equality x_5^post3 = x_5^post2 Propagated Equalities Original rule: l0 -> l0 : cnt_15^0'=cnt_15^post2, lt_9^0'=lt_9^post2, p_8^0'=p_8^post2, result_4^0'=result_4^post2, x_5^0'=x_5^post2, y_6^0'=y_6^post2, z_7^0'=z_7^post2, (0 == 0 /\ lt_9^1-cnt_15^0 == 0 /\ 1+x_5^0-y_6^0 <= 0 /\ z_7^0-z_7^post2 == 0 /\ -y_6^post2+y_6^0 == 0 /\ -p_8^post2+p_8^0 == 0 /\ cnt_15^0-cnt_15^post2 == 0 /\ -x_5^post2+x_5^0 == 0 /\ result_4^0-result_4^post2 == 0), cost: 1 New rule: l0 -> l0 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^post2, p_8^0'=p_8^0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^0, (0 == 0 /\ 1+x_5^0-y_6^0 <= 0), cost: 1 propagated equality lt_9^1 = cnt_15^0 propagated equality z_7^post2 = z_7^0 propagated equality y_6^post2 = y_6^0 propagated equality p_8^post2 = p_8^0 propagated equality cnt_15^post2 = cnt_15^0 propagated equality x_5^post2 = x_5^0 propagated equality result_4^post2 = result_4^0 Simplified Guard Original rule: l0 -> l0 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^post2, p_8^0'=p_8^0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^0, (0 == 0 /\ 1+x_5^0-y_6^0 <= 0), cost: 1 New rule: l0 -> l0 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^post2, p_8^0'=p_8^0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^0, 1+x_5^0-y_6^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l0 : cnt_15^0'=cnt_15^0, lt_9^0'=lt_9^post2, p_8^0'=p_8^0, result_4^0'=result_4^0, x_5^0'=x_5^0, y_6^0'=y_6^0, z_7^0'=z_7^0, 1+x_5^0-y_6^0 <= 0, cost: 1 New rule: l0 -> l0 : lt_9^0'=lt_9^post2, 1+x_5^0-y_6^0 <= 0, cost: 1 Step with 8 Trace 8[T] Blocked [{}, {}] Step with 7 Trace 8[T], 7[(-x_5^0+y_6^0 <= 0)] Blocked [{}, {}, {}] Backtrack Trace 8[T] Blocked [{}, {7[T]}] Step with 9 Trace 8[T], 9[(1+x_5^0-y_6^0 <= 0)] Blocked [{}, {7[T]}, {}] Nonterm Start location: l4 Program variables: lt_9^0 p_8^0 result_4^0 x_5^0 y_6^0 z_7^0 7: l0 -> l1 : result_4^0'=result_4^post1, -x_5^0+y_6^0 <= 0, cost: 1 9: l0 -> l0 : lt_9^0'=lt_9^post2, 1+x_5^0-y_6^0 <= 0, cost: 1 10: l0 -> LoAT_sink : (-1+n >= 0 /\ -1-x_5^0+y_6^0 >= 0), cost: NONTERM 8: l4 -> l0 : p_8^0'=z_7^post4, z_7^0'=z_7^post4, T, cost: 1 Certificate of Non-Termination Original rule: l0 -> l0 : lt_9^0'=lt_9^post2, (1+x_5^0-y_6^0 <= 0), cost: 1 New rule: l0 -> LoAT_sink : (-1+n >= 0 /\ -1-x_5^0+y_6^0 >= 0), cost: NONTERM -1-x_5^0+y_6^0 >= 0 [0]: monotonic increase yields -1-x_5^0+y_6^0 >= 0 Replacement map: {-1-x_5^0+y_6^0 >= 0 -> -1-x_5^0+y_6^0 >= 0} Step with 10 Trace 8[T], 10[(-1+n >= 0 /\ -1-x_5^0+y_6^0 >= 0)] Blocked [{}, {7[T]}, {10[T]}] Refute Counterexample [ lt_9^0=0 p_8^0=0 result_4^0=0 x_5^0=-1 y_6^0=0 z_7^0=0 ] 8 [ lt_9^0=0 p_8^0=p_8^0 result_4^0=0 x_5^0=-1 y_6^0=0 z_7^0=z_7^0 ] 10 NO Build SHA: a05f16bf13df659c382799650051f91bf6828c7b