unknown Initial ITS Start location: l4 Program variables: p^0 y^0 0: l0 -> l1 : p^0'=p^post1, y^0'=y^post1, (-1+p^post1 == 0 /\ -y^post1+y^0 == 0 /\ y^0 <= 0), cost: 1 1: l0 -> l2 : p^0'=p^post2, y^0'=y^post2, (1-y^0 <= 0 /\ p^0-p^post2 == 0 /\ 1+y^post2-y^0 == 0), cost: 1 2: l2 -> l0 : p^0'=p^post3, y^0'=y^post3, (y^0-y^post3 == 0 /\ -p^post3+p^0 == 0), cost: 1 3: l3 -> l2 : p^0'=p^post4, y^0'=y^post4, (p^post4 == 0 /\ -y^post4+y^0 == 0), cost: 1 4: l4 -> l3 : p^0'=p^post5, y^0'=y^post5, (-y^post5+y^0 == 0 /\ p^0-p^post5 == 0), cost: 1 Chained Linear Paths Start location: l4 Program variables: p^0 y^0 0: l0 -> l1 : p^0'=p^post1, y^0'=y^post1, (-1+p^post1 == 0 /\ -y^post1+y^0 == 0 /\ y^0 <= 0), cost: 1 1: l0 -> l2 : p^0'=p^post2, y^0'=y^post2, (1-y^0 <= 0 /\ p^0-p^post2 == 0 /\ 1+y^post2-y^0 == 0), cost: 1 2: l2 -> l0 : p^0'=p^post3, y^0'=y^post3, (y^0-y^post3 == 0 /\ -p^post3+p^0 == 0), cost: 1 5: l4 -> l2 : p^0'=p^post4, y^0'=y^post4, (p^post4 == 0 /\ -y^post5+y^0 == 0 /\ p^0-p^post5 == 0 /\ y^post5-y^post4 == 0), cost: 1 Eliminating location l3 by chaining: Applied chaining First rule: l4 -> l3 : p^0'=p^post5, y^0'=y^post5, (-y^post5+y^0 == 0 /\ p^0-p^post5 == 0), cost: 1 Second rule: l3 -> l2 : p^0'=p^post4, y^0'=y^post4, (p^post4 == 0 /\ -y^post4+y^0 == 0), cost: 1 New rule: l4 -> l2 : p^0'=p^post4, y^0'=y^post4, (p^post4 == 0 /\ -y^post5+y^0 == 0 /\ p^0-p^post5 == 0 /\ y^post5-y^post4 == 0), cost: 1 Applied deletion Removed the following rules: 3 4 Simplified Transitions Start location: l4 Program variables: p^0 y^0 6: l0 -> l1 : p^0'=1, y^0 <= 0, cost: 1 7: l0 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 8: l2 -> l0 : T, cost: 1 9: l4 -> l2 : p^0'=0, T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : p^0'=p^post1, y^0'=y^post1, (-1+p^post1 == 0 /\ -y^post1+y^0 == 0 /\ y^0 <= 0), cost: 1 New rule: l0 -> l1 : p^0'=1, y^0'=y^0, (0 == 0 /\ y^0 <= 0), cost: 1 propagated equality p^post1 = 1 propagated equality y^post1 = y^0 Simplified Guard Original rule: l0 -> l1 : p^0'=1, y^0'=y^0, (0 == 0 /\ y^0 <= 0), cost: 1 New rule: l0 -> l1 : p^0'=1, y^0'=y^0, y^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : p^0'=1, y^0'=y^0, y^0 <= 0, cost: 1 New rule: l0 -> l1 : p^0'=1, y^0 <= 0, cost: 1 Propagated Equalities Original rule: l0 -> l2 : p^0'=p^post2, y^0'=y^post2, (1-y^0 <= 0 /\ p^0-p^post2 == 0 /\ 1+y^post2-y^0 == 0), cost: 1 New rule: l0 -> l2 : p^0'=p^0, y^0'=-1+y^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 propagated equality p^post2 = p^0 propagated equality y^post2 = -1+y^0 Simplified Guard Original rule: l0 -> l2 : p^0'=p^0, y^0'=-1+y^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 New rule: l0 -> l2 : p^0'=p^0, y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l2 : p^0'=p^0, y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 New rule: l0 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 Propagated Equalities Original rule: l2 -> l0 : p^0'=p^post3, y^0'=y^post3, (y^0-y^post3 == 0 /\ -p^post3+p^0 == 0), cost: 1 New rule: l2 -> l0 : p^0'=p^0, y^0'=y^0, 0 == 0, cost: 1 propagated equality y^post3 = y^0 propagated equality p^post3 = p^0 Simplified Guard Original rule: l2 -> l0 : p^0'=p^0, y^0'=y^0, 0 == 0, cost: 1 New rule: l2 -> l0 : p^0'=p^0, y^0'=y^0, T, cost: 1 Removed Trivial Updates Original rule: l2 -> l0 : p^0'=p^0, y^0'=y^0, T, cost: 1 New rule: l2 -> l0 : T, cost: 1 Propagated Equalities Original rule: l4 -> l2 : p^0'=p^post4, y^0'=y^post4, (p^post4 == 0 /\ -y^post5+y^0 == 0 /\ p^0-p^post5 == 0 /\ y^post5-y^post4 == 0), cost: 1 New rule: l4 -> l2 : p^0'=0, y^0'=y^post5, (0 == 0 /\ -y^post5+y^0 == 0 /\ p^0-p^post5 == 0), cost: 1 propagated equality p^post4 = 0 propagated equality y^post4 = y^post5 Propagated Equalities Original rule: l4 -> l2 : p^0'=0, y^0'=y^post5, (0 == 0 /\ -y^post5+y^0 == 0 /\ p^0-p^post5 == 0), cost: 1 New rule: l4 -> l2 : p^0'=0, y^0'=y^0, 0 == 0, cost: 1 propagated equality y^post5 = y^0 propagated equality p^post5 = p^0 Simplified Guard Original rule: l4 -> l2 : p^0'=0, y^0'=y^0, 0 == 0, cost: 1 New rule: l4 -> l2 : p^0'=0, y^0'=y^0, T, cost: 1 Removed Trivial Updates Original rule: l4 -> l2 : p^0'=0, y^0'=y^0, T, cost: 1 New rule: l4 -> l2 : p^0'=0, T, cost: 1 Step with 9 Trace 9[T] Blocked [{}, {}] Step with 8 Trace 9[T], 8[T] Blocked [{}, {}, {}] Step with 6 Trace 9[T], 8[T], 6[(y^0 <= 0)] Blocked [{}, {}, {}, {}] Backtrack Trace 9[T], 8[T] Blocked [{}, {}, {6[T]}] Step with 7 Trace 9[T], 8[T], 7[(1-y^0 <= 0)] Blocked [{}, {}, {6[T]}, {}] Accelerate Start location: l4 Program variables: p^0 y^0 6: l0 -> l1 : p^0'=1, y^0 <= 0, cost: 1 7: l0 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 8: l2 -> l0 : T, cost: 1 10: l2 -> l2 : y^0'=y^0-n, (y^0-n >= 0 /\ -1+n >= 0), cost: 1 9: l4 -> l2 : p^0'=0, T, cost: 1 Loop Acceleration Original rule: l2 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 New rule: l2 -> l2 : y^0'=y^0-n, (y^0-n >= 0 /\ -1+n >= 0), cost: 1 -1+y^0 >= 0 [0]: montonic decrease yields y^0-n >= 0 -1+y^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+y^0 >= 0) Replacement map: {-1+y^0 >= 0 -> y^0-n >= 0} Trace 9[T], 10[(y^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {}, {10[T]}] Step with 8 Trace 9[T], 10[(y^0-n >= 0 /\ -1+n >= 0)], 8[T] Blocked [{}, {}, {10[T]}, {}] Step with 7 Trace 9[T], 10[(y^0-n >= 0 /\ -1+n >= 0)], 8[T], 7[(1-y^0 <= 0)] Blocked [{}, {}, {10[T]}, {}, {}] Covered Trace 9[T], 10[(y^0-n >= 0 /\ -1+n >= 0)], 8[T] Blocked [{}, {}, {10[T]}, {7[T]}] Step with 6 Trace 9[T], 10[(y^0-n >= 0 /\ -1+n >= 0)], 8[T], 6[(y^0 <= 0)] Blocked [{}, {}, {10[T]}, {7[T]}, {}] Backtrack Trace 9[T], 10[(y^0-n >= 0 /\ -1+n >= 0)], 8[T] Blocked [{}, {}, {10[T]}, {6[T], 7[T]}] Backtrack Trace 9[T], 10[(y^0-n >= 0 /\ -1+n >= 0)] Blocked [{}, {}, {8[T], 10[T]}] Backtrack Trace 9[T] Blocked [{}, {10[T]}] Step with 8 Trace 9[T], 8[T] Blocked [{}, {10[T]}, {}] Step with 6 Trace 9[T], 8[T], 6[(y^0 <= 0)] Blocked [{}, {10[T]}, {}, {}] Backtrack Trace 9[T], 8[T] Blocked [{}, {10[T]}, {6[T]}] Step with 7 Trace 9[T], 8[T], 7[(1-y^0 <= 0)] Blocked [{}, {10[T]}, {6[T]}, {}] Covered Trace 9[T], 8[T] Blocked [{}, {10[T]}, {6[T], 7[T]}] Backtrack Trace 9[T] Blocked [{}, {8[T], 10[T]}] Backtrack Trace Blocked [{9[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b