unknown Initial ITS Start location: l6 Program variables: p^0 x^0 y^0 0: l0 -> l1 : p^0'=p^post1, x^0'=x^post1, y^0'=y^post1, (-x^post1+x^0 == 0 /\ -1+p^post1 == 0 /\ y^0 <= 0 /\ -y^post1+y^0 == 0 /\ x^0 <= 0), cost: 1 1: l0 -> l2 : p^0'=p^post2, x^0'=x^post2, y^0'=y^post2, (p^0-p^post2 == 0 /\ 1-y^0 <= 0 /\ -x^post2+x^0 == 0 /\ 1+y^post2-y^0 == 0), cost: 1 2: l2 -> l0 : p^0'=p^post3, x^0'=x^post3, y^0'=y^post3, (p^0-p^post3 == 0 /\ -x^post3+x^0 == 0 /\ -y^post3+y^0 == 0), cost: 1 3: l3 -> l2 : p^0'=p^post4, x^0'=x^post4, y^0'=y^post4, (-y^post4+y^0 == 0 /\ p^0-p^post4 == 0 /\ -x^post4+x^0 == 0 /\ x^0 <= 0), cost: 1 4: l3 -> l4 : p^0'=p^post5, x^0'=x^post5, y^0'=y^post5, (-x^post5+x^0 == 0 /\ -1-p^0+p^post5 == 0 /\ -y^post5+y^0 == 0 /\ 1-x^0 <= 0), cost: 1 5: l5 -> l3 : p^0'=p^post6, x^0'=x^post6, y^0'=y^post6, (-x^post6+x^0 == 0 /\ p^post6 == 0 /\ -y^post6+y^0 == 0), cost: 1 6: l6 -> l5 : p^0'=p^post7, x^0'=x^post7, y^0'=y^post7, (-x^post7+x^0 == 0 /\ p^0-p^post7 == 0 /\ -y^post7+y^0 == 0), cost: 1 Chained Linear Paths Start location: l6 Program variables: p^0 x^0 y^0 0: l0 -> l1 : p^0'=p^post1, x^0'=x^post1, y^0'=y^post1, (-x^post1+x^0 == 0 /\ -1+p^post1 == 0 /\ y^0 <= 0 /\ -y^post1+y^0 == 0 /\ x^0 <= 0), cost: 1 1: l0 -> l2 : p^0'=p^post2, x^0'=x^post2, y^0'=y^post2, (p^0-p^post2 == 0 /\ 1-y^0 <= 0 /\ -x^post2+x^0 == 0 /\ 1+y^post2-y^0 == 0), cost: 1 2: l2 -> l0 : p^0'=p^post3, x^0'=x^post3, y^0'=y^post3, (p^0-p^post3 == 0 /\ -x^post3+x^0 == 0 /\ -y^post3+y^0 == 0), cost: 1 3: l3 -> l2 : p^0'=p^post4, x^0'=x^post4, y^0'=y^post4, (-y^post4+y^0 == 0 /\ p^0-p^post4 == 0 /\ -x^post4+x^0 == 0 /\ x^0 <= 0), cost: 1 4: l3 -> l4 : p^0'=p^post5, x^0'=x^post5, y^0'=y^post5, (-x^post5+x^0 == 0 /\ -1-p^0+p^post5 == 0 /\ -y^post5+y^0 == 0 /\ 1-x^0 <= 0), cost: 1 7: l6 -> l3 : p^0'=p^post6, x^0'=x^post6, y^0'=y^post6, (y^post7-y^post6 == 0 /\ p^post6 == 0 /\ -x^post7+x^0 == 0 /\ p^0-p^post7 == 0 /\ x^post7-x^post6 == 0 /\ -y^post7+y^0 == 0), cost: 1 Eliminating location l5 by chaining: Applied chaining First rule: l6 -> l5 : p^0'=p^post7, x^0'=x^post7, y^0'=y^post7, (-x^post7+x^0 == 0 /\ p^0-p^post7 == 0 /\ -y^post7+y^0 == 0), cost: 1 Second rule: l5 -> l3 : p^0'=p^post6, x^0'=x^post6, y^0'=y^post6, (-x^post6+x^0 == 0 /\ p^post6 == 0 /\ -y^post6+y^0 == 0), cost: 1 New rule: l6 -> l3 : p^0'=p^post6, x^0'=x^post6, y^0'=y^post6, (y^post7-y^post6 == 0 /\ p^post6 == 0 /\ -x^post7+x^0 == 0 /\ p^0-p^post7 == 0 /\ x^post7-x^post6 == 0 /\ -y^post7+y^0 == 0), cost: 1 Applied deletion Removed the following rules: 5 6 Simplified Transitions Start location: l6 Program variables: p^0 x^0 y^0 8: l0 -> l1 : p^0'=1, (y^0 <= 0 /\ x^0 <= 0), cost: 1 9: l0 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 10: l2 -> l0 : T, cost: 1 11: l3 -> l2 : x^0 <= 0, cost: 1 12: l3 -> l4 : p^0'=1+p^0, 1-x^0 <= 0, cost: 1 13: l6 -> l3 : p^0'=0, T, cost: 1 Propagated Equalities Original rule: l0 -> l1 : p^0'=p^post1, x^0'=x^post1, y^0'=y^post1, (-x^post1+x^0 == 0 /\ -1+p^post1 == 0 /\ y^0 <= 0 /\ -y^post1+y^0 == 0 /\ x^0 <= 0), cost: 1 New rule: l0 -> l1 : p^0'=1, x^0'=x^0, y^0'=y^0, (0 == 0 /\ y^0 <= 0 /\ x^0 <= 0), cost: 1 propagated equality x^post1 = x^0 propagated equality p^post1 = 1 propagated equality y^post1 = y^0 Simplified Guard Original rule: l0 -> l1 : p^0'=1, x^0'=x^0, y^0'=y^0, (0 == 0 /\ y^0 <= 0 /\ x^0 <= 0), cost: 1 New rule: l0 -> l1 : p^0'=1, x^0'=x^0, y^0'=y^0, (y^0 <= 0 /\ x^0 <= 0), cost: 1 Removed Trivial Updates Original rule: l0 -> l1 : p^0'=1, x^0'=x^0, y^0'=y^0, (y^0 <= 0 /\ x^0 <= 0), cost: 1 New rule: l0 -> l1 : p^0'=1, (y^0 <= 0 /\ x^0 <= 0), cost: 1 Propagated Equalities Original rule: l0 -> l2 : p^0'=p^post2, x^0'=x^post2, y^0'=y^post2, (p^0-p^post2 == 0 /\ 1-y^0 <= 0 /\ -x^post2+x^0 == 0 /\ 1+y^post2-y^0 == 0), cost: 1 New rule: l0 -> l2 : p^0'=p^0, x^0'=x^0, y^0'=-1+y^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 propagated equality p^post2 = p^0 propagated equality x^post2 = x^0 propagated equality y^post2 = -1+y^0 Simplified Guard Original rule: l0 -> l2 : p^0'=p^0, x^0'=x^0, y^0'=-1+y^0, (0 == 0 /\ 1-y^0 <= 0), cost: 1 New rule: l0 -> l2 : p^0'=p^0, x^0'=x^0, y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l0 -> l2 : p^0'=p^0, x^0'=x^0, y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 New rule: l0 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 Propagated Equalities Original rule: l2 -> l0 : p^0'=p^post3, x^0'=x^post3, y^0'=y^post3, (p^0-p^post3 == 0 /\ -x^post3+x^0 == 0 /\ -y^post3+y^0 == 0), cost: 1 New rule: l2 -> l0 : p^0'=p^0, x^0'=x^0, y^0'=y^0, 0 == 0, cost: 1 propagated equality p^post3 = p^0 propagated equality x^post3 = x^0 propagated equality y^post3 = y^0 Simplified Guard Original rule: l2 -> l0 : p^0'=p^0, x^0'=x^0, y^0'=y^0, 0 == 0, cost: 1 New rule: l2 -> l0 : p^0'=p^0, x^0'=x^0, y^0'=y^0, T, cost: 1 Removed Trivial Updates Original rule: l2 -> l0 : p^0'=p^0, x^0'=x^0, y^0'=y^0, T, cost: 1 New rule: l2 -> l0 : T, cost: 1 Propagated Equalities Original rule: l3 -> l2 : p^0'=p^post4, x^0'=x^post4, y^0'=y^post4, (-y^post4+y^0 == 0 /\ p^0-p^post4 == 0 /\ -x^post4+x^0 == 0 /\ x^0 <= 0), cost: 1 New rule: l3 -> l2 : p^0'=p^0, x^0'=x^0, y^0'=y^0, (0 == 0 /\ x^0 <= 0), cost: 1 propagated equality y^post4 = y^0 propagated equality p^post4 = p^0 propagated equality x^post4 = x^0 Simplified Guard Original rule: l3 -> l2 : p^0'=p^0, x^0'=x^0, y^0'=y^0, (0 == 0 /\ x^0 <= 0), cost: 1 New rule: l3 -> l2 : p^0'=p^0, x^0'=x^0, y^0'=y^0, x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l3 -> l2 : p^0'=p^0, x^0'=x^0, y^0'=y^0, x^0 <= 0, cost: 1 New rule: l3 -> l2 : x^0 <= 0, cost: 1 Propagated Equalities Original rule: l3 -> l4 : p^0'=p^post5, x^0'=x^post5, y^0'=y^post5, (-x^post5+x^0 == 0 /\ -1-p^0+p^post5 == 0 /\ -y^post5+y^0 == 0 /\ 1-x^0 <= 0), cost: 1 New rule: l3 -> l4 : p^0'=1+p^0, x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 propagated equality x^post5 = x^0 propagated equality p^post5 = 1+p^0 propagated equality y^post5 = y^0 Simplified Guard Original rule: l3 -> l4 : p^0'=1+p^0, x^0'=x^0, y^0'=y^0, (0 == 0 /\ 1-x^0 <= 0), cost: 1 New rule: l3 -> l4 : p^0'=1+p^0, x^0'=x^0, y^0'=y^0, 1-x^0 <= 0, cost: 1 Removed Trivial Updates Original rule: l3 -> l4 : p^0'=1+p^0, x^0'=x^0, y^0'=y^0, 1-x^0 <= 0, cost: 1 New rule: l3 -> l4 : p^0'=1+p^0, 1-x^0 <= 0, cost: 1 Propagated Equalities Original rule: l6 -> l3 : p^0'=p^post6, x^0'=x^post6, y^0'=y^post6, (y^post7-y^post6 == 0 /\ p^post6 == 0 /\ -x^post7+x^0 == 0 /\ p^0-p^post7 == 0 /\ x^post7-x^post6 == 0 /\ -y^post7+y^0 == 0), cost: 1 New rule: l6 -> l3 : p^0'=0, x^0'=x^post7, y^0'=y^post7, (0 == 0 /\ -x^post7+x^0 == 0 /\ p^0-p^post7 == 0 /\ -y^post7+y^0 == 0), cost: 1 propagated equality y^post6 = y^post7 propagated equality p^post6 = 0 propagated equality x^post6 = x^post7 Propagated Equalities Original rule: l6 -> l3 : p^0'=0, x^0'=x^post7, y^0'=y^post7, (0 == 0 /\ -x^post7+x^0 == 0 /\ p^0-p^post7 == 0 /\ -y^post7+y^0 == 0), cost: 1 New rule: l6 -> l3 : p^0'=0, x^0'=x^0, y^0'=y^0, 0 == 0, cost: 1 propagated equality x^post7 = x^0 propagated equality p^post7 = p^0 propagated equality y^post7 = y^0 Simplified Guard Original rule: l6 -> l3 : p^0'=0, x^0'=x^0, y^0'=y^0, 0 == 0, cost: 1 New rule: l6 -> l3 : p^0'=0, x^0'=x^0, y^0'=y^0, T, cost: 1 Removed Trivial Updates Original rule: l6 -> l3 : p^0'=0, x^0'=x^0, y^0'=y^0, T, cost: 1 New rule: l6 -> l3 : p^0'=0, T, cost: 1 Step with 13 Trace 13[T] Blocked [{}, {}] Step with 11 Trace 13[T], 11[(x^0 <= 0)] Blocked [{}, {}, {}] Step with 10 Trace 13[T], 11[(x^0 <= 0)], 10[T] Blocked [{}, {}, {}, {}] Step with 8 Trace 13[T], 11[(x^0 <= 0)], 10[T], 8[(y^0 <= 0 /\ x^0 <= 0)] Blocked [{}, {}, {}, {}, {}] Backtrack Trace 13[T], 11[(x^0 <= 0)], 10[T] Blocked [{}, {}, {}, {8[T]}] Step with 9 Trace 13[T], 11[(x^0 <= 0)], 10[T], 9[(1-y^0 <= 0)] Blocked [{}, {}, {}, {8[T]}, {}] Accelerate Start location: l6 Program variables: p^0 x^0 y^0 8: l0 -> l1 : p^0'=1, (y^0 <= 0 /\ x^0 <= 0), cost: 1 9: l0 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 10: l2 -> l0 : T, cost: 1 14: l2 -> l2 : y^0'=-n+y^0, (-1+n >= 0 /\ -n+y^0 >= 0), cost: 1 11: l3 -> l2 : x^0 <= 0, cost: 1 12: l3 -> l4 : p^0'=1+p^0, 1-x^0 <= 0, cost: 1 13: l6 -> l3 : p^0'=0, T, cost: 1 Loop Acceleration Original rule: l2 -> l2 : y^0'=-1+y^0, 1-y^0 <= 0, cost: 1 New rule: l2 -> l2 : y^0'=-n+y^0, (-1+n >= 0 /\ -n+y^0 >= 0), cost: 1 -1+y^0 >= 0 [0]: montonic decrease yields -n+y^0 >= 0 -1+y^0 >= 0 [1]: eventual increase yields (1 <= 0 /\ -1+y^0 >= 0) Replacement map: {-1+y^0 >= 0 -> -n+y^0 >= 0} Trace 13[T], 11[(x^0 <= 0)], 14[(-1+n >= 0 /\ -n+y^0 >= 0)] Blocked [{}, {}, {}, {14[T]}] Step with 10 Trace 13[T], 11[(x^0 <= 0)], 14[(-1+n >= 0 /\ -n+y^0 >= 0)], 10[T] Blocked [{}, {}, {}, {14[T]}, {}] Step with 9 Trace 13[T], 11[(x^0 <= 0)], 14[(-1+n >= 0 /\ -n+y^0 >= 0)], 10[T], 9[(1-y^0 <= 0)] Blocked [{}, {}, {}, {14[T]}, {}, {}] Covered Trace 13[T], 11[(x^0 <= 0)], 14[(-1+n >= 0 /\ -n+y^0 >= 0)], 10[T] Blocked [{}, {}, {}, {14[T]}, {9[T]}] Step with 8 Trace 13[T], 11[(x^0 <= 0)], 14[(-1+n >= 0 /\ -n+y^0 >= 0)], 10[T], 8[(y^0 <= 0 /\ x^0 <= 0)] Blocked [{}, {}, {}, {14[T]}, {9[T]}, {}] Backtrack Trace 13[T], 11[(x^0 <= 0)], 14[(-1+n >= 0 /\ -n+y^0 >= 0)], 10[T] Blocked [{}, {}, {}, {14[T]}, {8[T], 9[T]}] Backtrack Trace 13[T], 11[(x^0 <= 0)], 14[(-1+n >= 0 /\ -n+y^0 >= 0)] Blocked [{}, {}, {}, {10[T], 14[T]}] Backtrack Trace 13[T], 11[(x^0 <= 0)] Blocked [{}, {}, {14[T]}] Step with 10 Trace 13[T], 11[(x^0 <= 0)], 10[T] Blocked [{}, {}, {14[T]}, {}] Step with 8 Trace 13[T], 11[(x^0 <= 0)], 10[T], 8[(y^0 <= 0 /\ x^0 <= 0)] Blocked [{}, {}, {14[T]}, {}, {}] Backtrack Trace 13[T], 11[(x^0 <= 0)], 10[T] Blocked [{}, {}, {14[T]}, {8[T]}] Step with 9 Trace 13[T], 11[(x^0 <= 0)], 10[T], 9[(1-y^0 <= 0)] Blocked [{}, {}, {14[T]}, {8[T]}, {}] Covered Trace 13[T], 11[(x^0 <= 0)], 10[T] Blocked [{}, {}, {14[T]}, {8[T], 9[T]}] Backtrack Trace 13[T], 11[(x^0 <= 0)] Blocked [{}, {}, {10[T], 14[T]}] Backtrack Trace 13[T] Blocked [{}, {11[T]}] Step with 12 Trace 13[T], 12[(1-x^0 <= 0)] Blocked [{}, {11[T]}, {}] Backtrack Trace 13[T] Blocked [{}, {11[T], 12[T]}] Backtrack Trace Blocked [{13[T]}] Accept unknown Build SHA: a05f16bf13df659c382799650051f91bf6828c7b