YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: undef1, oldX1^0 -> undef6, oldX2^0 -> undef7, oldX3^0 -> undef8, oldX4^0 -> undef9, oldX5^0 -> (0 + x5^0), oldX6^0 -> undef11, oldX7^0 -> undef12, x0^0 -> (0 + undef1), x1^0 -> (0 + undef6), x2^0 -> (0 + undef7), x3^0 -> (0 + undef8), x4^0 -> (0 + undef9), x5^0 -> (0 + undef11), x6^0 -> (0 + undef12)}> undef22, oldX1^0 -> undef27, oldX2^0 -> undef28, oldX3^0 -> undef29, oldX4^0 -> undef30, oldX5^0 -> undef31, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef33, x0^0 -> (0 + undef22), x1^0 -> (0 + undef27), x2^0 -> (0 + undef28), x3^0 -> (0 + undef29), x4^0 -> (0 + undef30), x5^0 -> (0 + undef31), x6^0 -> (0 + undef33)}> undef43, oldX1^0 -> undef48, oldX2^0 -> undef49, oldX3^0 -> undef50, oldX4^0 -> undef51, oldX5^0 -> undef52, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef54, x0^0 -> (0 + undef43), x1^0 -> (0 + undef48), x2^0 -> (0 + undef49), x3^0 -> (0 + undef50), x4^0 -> (0 + undef51), x5^0 -> (0 + undef52), x6^0 -> (0 + undef54)}> undef64, oldX1^0 -> undef69, oldX2^0 -> undef70, oldX3^0 -> undef71, oldX4^0 -> undef72, oldX5^0 -> undef73, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef75, x0^0 -> (0 + undef64), x1^0 -> (0 + undef69), x2^0 -> (0 + undef70), x3^0 -> (0 + undef71), x4^0 -> (0 + undef72), x5^0 -> (0 + undef73), x6^0 -> (0 + undef75)}> undef85, oldX1^0 -> undef90, oldX2^0 -> undef91, oldX3^0 -> undef92, oldX4^0 -> undef93, oldX5^0 -> undef94, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef96, x0^0 -> (0 + undef85), x1^0 -> (0 + undef90), x2^0 -> (0 + undef91), x3^0 -> (0 + undef92), x4^0 -> (0 + undef93), x5^0 -> (0 + undef94), x6^0 -> (1 + undef94)}> undef106, oldX1^0 -> undef111, oldX2^0 -> undef112, oldX3^0 -> undef113, oldX4^0 -> undef114, oldX5^0 -> undef115, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef117, x0^0 -> (0 + undef106), x1^0 -> (0 + undef111), x2^0 -> (0 + undef112), x3^0 -> (0 + undef113), x4^0 -> (0 + undef114), x5^0 -> (0 + undef115), x6^0 -> (1 + undef115)}> undef127, oldX1^0 -> undef132, oldX2^0 -> undef133, oldX3^0 -> undef134, oldX4^0 -> undef135, oldX5^0 -> undef136, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef138, x0^0 -> (0 + undef127), x1^0 -> (0 + undef132), x2^0 -> (0 + undef133), x3^0 -> (0 + undef134), x4^0 -> (0 + undef135), x5^0 -> (0 + undef136), x6^0 -> (1 + undef136)}> undef148, oldX1^0 -> undef153, oldX2^0 -> undef154, oldX3^0 -> undef155, oldX4^0 -> undef156, oldX5^0 -> undef157, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef159, x0^0 -> (0 + undef148), x1^0 -> (0 + undef153), x2^0 -> (0 + undef154), x3^0 -> (0 + undef155), x4^0 -> (0 + undef156), x5^0 -> (0 + undef157), x6^0 -> (1 + undef157)}> undef169, oldX1^0 -> undef174, oldX2^0 -> undef175, oldX3^0 -> undef176, oldX4^0 -> (0 + x4^0), oldX5^0 -> undef178, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef180, oldX8^0 -> undef181, x0^0 -> (0 + undef169), x1^0 -> (0 + undef174), x2^0 -> (0 + undef175), x3^0 -> (0 + undef176), x4^0 -> 1, x5^0 -> (1 + undef178), x6^0 -> (0 + undef180)}> undef190, oldX1^0 -> undef195, oldX2^0 -> undef196, oldX3^0 -> undef197, oldX4^0 -> (0 + x4^0), oldX5^0 -> undef199, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef201, oldX8^0 -> undef202, x0^0 -> (0 + undef190), x1^0 -> (0 + undef195), x2^0 -> (0 + undef196), x3^0 -> (0 + undef197), x4^0 -> 1, x5^0 -> (1 + undef199), x6^0 -> (0 + undef201)}> undef211, oldX1^0 -> undef216, oldX2^0 -> undef217, oldX3^0 -> undef218, oldX4^0 -> undef219, oldX5^0 -> undef220, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef222, x0^0 -> (0 + undef211), x1^0 -> (0 + undef216), x2^0 -> (0 + undef217), x3^0 -> (0 + undef218), x4^0 -> (0 + undef219), x5^0 -> (0 + undef220), x6^0 -> (0 + undef220)}> undef232, oldX1^0 -> undef237, oldX2^0 -> undef238, oldX3^0 -> undef239, oldX4^0 -> undef240, oldX5^0 -> undef241, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef243, x0^0 -> (0 + undef232), x1^0 -> (0 + undef237), x2^0 -> (0 + undef238), x3^0 -> (0 + undef239), x4^0 -> (0 + undef240), x5^0 -> (0 + undef241), x6^0 -> (0 + undef241)}> undef253, oldX1^0 -> undef258, oldX2^0 -> undef259, oldX3^0 -> undef260, oldX4^0 -> (0 + x4^0), oldX5^0 -> undef262, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef264, oldX8^0 -> undef265, x0^0 -> (0 + undef253), x1^0 -> (0 + undef258), x2^0 -> (0 + undef259), x3^0 -> (0 + undef260), x4^0 -> 1, x5^0 -> (0 + undef262), x6^0 -> (0 + undef264)}> undef274, oldX1^0 -> undef279, oldX2^0 -> undef280, oldX3^0 -> undef281, oldX4^0 -> undef282, oldX5^0 -> undef283, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef285, x0^0 -> (0 + undef274), x1^0 -> (0 + undef279), x2^0 -> (0 + undef280), x3^0 -> (0 + undef281), x4^0 -> (0 + undef282), x5^0 -> (0 + undef283), x6^0 -> (0 + undef285)}> undef295, oldX1^0 -> undef300, oldX2^0 -> undef301, oldX3^0 -> undef302, oldX4^0 -> undef303, oldX5^0 -> undef304, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef306, x0^0 -> (0 + undef295), x1^0 -> (0 + undef300), x2^0 -> (0 + undef301), x3^0 -> (0 + undef302), x4^0 -> (0 + undef303), x5^0 -> (0 + undef304), x6^0 -> (0 + undef306)}> undef316, oldX1^0 -> undef321, oldX2^0 -> undef322, oldX3^0 -> undef323, oldX4^0 -> undef324, oldX5^0 -> undef325, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef327, x0^0 -> (0 + undef316), x1^0 -> (0 + undef321), x2^0 -> (0 + undef322), x3^0 -> (0 + undef323), x4^0 -> (0 + undef324), x5^0 -> (0 + undef325), x6^0 -> (0 + undef327)}> undef337, oldX1^0 -> undef342, oldX2^0 -> undef343, oldX3^0 -> undef344, oldX4^0 -> undef345, oldX5^0 -> undef346, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef348, x0^0 -> (0 + undef337), x1^0 -> (0 + undef342), x2^0 -> (0 + undef343), x3^0 -> (0 + undef344), x4^0 -> (0 + undef345), x5^0 -> (0 + undef346), x6^0 -> (0 + undef348)}> (0 + x0^0), oldX10^0 -> undef359, oldX11^0 -> undef360, oldX12^0 -> undef361, oldX13^0 -> undef362, oldX1^0 -> (0 + x1^0), oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> (0 + x6^0), oldX7^0 -> undef369, oldX8^0 -> undef370, oldX9^0 -> undef371, x0^0 -> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> undef379, oldX1^0 -> undef384, oldX2^0 -> undef385, oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> (0 + x6^0), oldX7^0 -> undef390, oldX8^0 -> undef391, x0^0 -> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> undef400, oldX10^0 -> undef401, oldX1^0 -> undef405, oldX2^0 -> undef406, oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> (0 + x6^0), oldX7^0 -> undef411, oldX8^0 -> undef412, oldX9^0 -> undef413, x0^0 -> (0 + undef400), x1^0 -> (0 + undef405), x2^0 -> (0 + undef406), x3^0 -> (0 + undef411), x4^0 -> (0 + undef412), x5^0 -> (0 + undef413), x6^0 -> (0 + undef401)}> undef421, oldX10^0 -> undef422, oldX1^0 -> undef426, oldX2^0 -> undef427, oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> (0 + x6^0), oldX7^0 -> undef432, oldX8^0 -> undef433, oldX9^0 -> undef434, x0^0 -> (0 + undef421), x1^0 -> (0 + undef426), x2^0 -> (0 + undef427), x3^0 -> (0 + undef432), x4^0 -> (0 + undef433), x5^0 -> (0 + undef434), x6^0 -> (0 + undef422)}> undef442, oldX10^0 -> undef443, oldX1^0 -> undef447, oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> (0 + x6^0), oldX7^0 -> undef453, oldX8^0 -> undef454, oldX9^0 -> undef455, x0^0 -> (0 + undef442), x1^0 -> (0 + undef447), x2^0 -> 0, x3^0 -> (0 + undef453), x4^0 -> (0 + undef454), x5^0 -> (0 + undef455), x6^0 -> (0 + undef443)}> undef463, oldX10^0 -> undef464, oldX1^0 -> undef468, oldX2^0 -> undef469, oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> (0 + x6^0), oldX7^0 -> undef474, oldX8^0 -> undef475, oldX9^0 -> undef476, x0^0 -> (0 + undef463), x1^0 -> (0 + undef468), x2^0 -> (1 + undef469), x3^0 -> (0 + undef474), x4^0 -> (0 + undef475), x5^0 -> (0 + undef476), x6^0 -> (0 + undef464)}> undef484, oldX1^0 -> undef489, oldX2^0 -> undef490, oldX3^0 -> undef491, oldX4^0 -> undef492, oldX5^0 -> undef493, oldX6^0 -> (0 + x6^0), oldX7^0 -> undef495, x0^0 -> (0 + undef484), x1^0 -> (0 + undef489), x2^0 -> (0 + undef490), x3^0 -> (0 + undef491), x4^0 -> (0 + undef492), x5^0 -> (0 + undef493), x6^0 -> (0 + undef495)}> undef505, oldX10^0 -> undef506, oldX11^0 -> undef507, oldX1^0 -> undef510, oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> (0 + x6^0), oldX7^0 -> undef516, oldX8^0 -> undef517, oldX9^0 -> undef518, x0^0 -> (0 + undef505), x1^0 -> (0 + undef510), x2^0 -> (0 + undef516), x3^0 -> (0 + undef517), x4^0 -> (0 + undef518), x5^0 -> (0 + undef506), x6^0 -> (0 + undef507)}> Fresh variables: undef1, undef6, undef7, undef8, undef9, undef11, undef12, undef22, undef27, undef28, undef29, undef30, undef31, undef33, undef43, undef48, undef49, undef50, undef51, undef52, undef54, undef64, undef69, undef70, undef71, undef72, undef73, undef75, undef85, undef90, undef91, undef92, undef93, undef94, undef96, undef106, undef111, undef112, undef113, undef114, undef115, undef117, undef127, undef132, undef133, undef134, undef135, undef136, undef138, undef148, undef153, undef154, undef155, undef156, undef157, undef159, undef169, undef174, undef175, undef176, undef178, undef180, undef181, undef190, undef195, undef196, undef197, undef199, undef201, undef202, undef211, undef216, undef217, undef218, undef219, undef220, undef222, undef232, undef237, undef238, undef239, undef240, undef241, undef243, undef253, undef258, undef259, undef260, undef262, undef264, undef265, undef274, undef279, undef280, undef281, undef282, undef283, undef285, undef295, undef300, undef301, undef302, undef303, undef304, undef306, undef316, undef321, undef322, undef323, undef324, undef325, undef327, undef337, undef342, undef343, undef344, undef345, undef346, undef348, undef359, undef360, undef361, undef362, undef369, undef370, undef371, undef379, undef384, undef385, undef390, undef391, undef400, undef401, undef405, undef406, undef411, undef412, undef413, undef421, undef422, undef426, undef427, undef432, undef433, undef434, undef442, undef443, undef447, undef453, undef454, undef455, undef463, undef464, undef468, undef469, undef474, undef475, undef476, undef484, undef489, undef490, undef491, undef492, undef493, undef495, undef505, undef506, undef507, undef510, undef516, undef517, undef518, Undef variables: undef1, undef6, undef7, undef8, undef9, undef11, undef12, undef22, undef27, undef28, undef29, undef30, undef31, undef33, undef43, undef48, undef49, undef50, undef51, undef52, undef54, undef64, undef69, undef70, undef71, undef72, undef73, undef75, undef85, undef90, undef91, undef92, undef93, undef94, undef96, undef106, undef111, undef112, undef113, undef114, undef115, undef117, undef127, undef132, undef133, undef134, undef135, undef136, undef138, undef148, undef153, undef154, undef155, undef156, undef157, undef159, undef169, undef174, undef175, undef176, undef178, undef180, undef181, undef190, undef195, undef196, undef197, undef199, undef201, undef202, undef211, undef216, undef217, undef218, undef219, undef220, undef222, undef232, undef237, undef238, undef239, undef240, undef241, undef243, undef253, undef258, undef259, undef260, undef262, undef264, undef265, undef274, undef279, undef280, undef281, undef282, undef283, undef285, undef295, undef300, undef301, undef302, undef303, undef304, undef306, undef316, undef321, undef322, undef323, undef324, undef325, undef327, undef337, undef342, undef343, undef344, undef345, undef346, undef348, undef359, undef360, undef361, undef362, undef369, undef370, undef371, undef379, undef384, undef385, undef390, undef391, undef400, undef401, undef405, undef406, undef411, undef412, undef413, undef421, undef422, undef426, undef427, undef432, undef433, undef434, undef442, undef443, undef447, undef453, undef454, undef455, undef463, undef464, undef468, undef469, undef474, undef475, undef476, undef484, undef489, undef490, undef491, undef492, undef493, undef495, undef505, undef506, undef507, undef510, undef516, undef517, undef518, Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef1), x1^0 -> (0 + undef6), x2^0 -> (0 + undef7), x3^0 -> (0 + undef8), x4^0 -> (0 + undef9), x5^0 -> (0 + undef11), x6^0 -> (0 + undef12)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef369), x1^0 -> (0 + undef370), x2^0 -> (0 + undef371), x3^0 -> (0 + undef359), x4^0 -> (0 + undef360), x5^0 -> (0 + undef361), x6^0 -> (0 + undef362)}> (0 + undef379), x1^0 -> (0 + undef384), x2^0 -> (0 + undef385), x3^0 -> (0 + undef390), x4^0 -> 0, x5^0 -> 0, x6^0 -> (0 + undef391)}> (0 + undef337), x1^0 -> (0 + undef342), x2^0 -> (0 + undef343), x3^0 -> (0 + undef344), x4^0 -> (0 + undef345), x5^0 -> (0 + undef346), x6^0 -> (0 + undef348)}> (0 + undef1), x1^0 -> (0 + undef6), x2^0 -> (0 + undef7), x3^0 -> (0 + undef8), x4^0 -> (0 + undef9), x5^0 -> (0 + undef11), x6^0 -> (0 + undef12)}> (0 + undef1), x1^0 -> (0 + undef6), x2^0 -> (0 + undef7), x3^0 -> (0 + undef8), x4^0 -> (0 + undef9), x5^0 -> (0 + undef11), x6^0 -> (0 + undef12)}> (0 + undef253), x1^0 -> (0 + undef258), x2^0 -> (0 + undef259), x3^0 -> (0 + undef260), x4^0 -> 1, x5^0 -> (0 + undef262), x6^0 -> (0 + undef264)}> Fresh variables: undef1, undef6, undef7, undef8, undef9, undef11, undef12, undef22, undef27, undef28, undef29, undef30, undef31, undef33, undef43, undef48, undef49, undef50, undef51, undef52, undef54, undef64, undef69, undef70, undef71, undef72, undef73, undef75, undef85, undef90, undef91, undef92, undef93, undef94, undef96, undef106, undef111, undef112, undef113, undef114, undef115, undef117, undef127, undef132, undef133, undef134, undef135, undef136, undef138, undef148, undef153, undef154, undef155, undef156, undef157, undef159, undef169, undef174, undef175, undef176, undef178, undef180, undef181, undef190, undef195, undef196, undef197, undef199, undef201, undef202, undef211, undef216, undef217, undef218, undef219, undef220, undef222, undef232, undef237, undef238, undef239, undef240, undef241, undef243, undef253, undef258, undef259, undef260, undef262, undef264, undef265, undef274, undef279, undef280, undef281, undef282, undef283, undef285, undef295, undef300, undef301, undef302, undef303, undef304, undef306, undef316, undef321, undef322, undef323, undef324, undef325, undef327, undef337, undef342, undef343, undef344, undef345, undef346, undef348, undef359, undef360, undef361, undef362, undef369, undef370, undef371, undef379, undef384, undef385, undef390, undef391, undef400, undef401, undef405, undef406, undef411, undef412, undef413, undef421, undef422, undef426, undef427, undef432, undef433, undef434, undef442, undef443, undef447, undef453, undef454, undef455, undef463, undef464, undef468, undef469, undef474, undef475, undef476, undef484, undef489, undef490, undef491, undef492, undef493, undef495, undef505, undef506, undef507, undef510, undef516, undef517, undef518, Undef variables: undef1, undef6, undef7, undef8, undef9, undef11, undef12, undef22, undef27, undef28, undef29, undef30, undef31, undef33, undef43, undef48, undef49, undef50, undef51, undef52, undef54, undef64, undef69, undef70, undef71, undef72, undef73, undef75, undef85, undef90, undef91, undef92, undef93, undef94, undef96, undef106, undef111, undef112, undef113, undef114, undef115, undef117, undef127, undef132, undef133, undef134, undef135, undef136, undef138, undef148, undef153, undef154, undef155, undef156, undef157, undef159, undef169, undef174, undef175, undef176, undef178, undef180, undef181, undef190, undef195, undef196, undef197, undef199, undef201, undef202, undef211, undef216, undef217, undef218, undef219, undef220, undef222, undef232, undef237, undef238, undef239, undef240, undef241, undef243, undef253, undef258, undef259, undef260, undef262, undef264, undef265, undef274, undef279, undef280, undef281, undef282, undef283, undef285, undef295, undef300, undef301, undef302, undef303, undef304, undef306, undef316, undef321, undef322, undef323, undef324, undef325, undef327, undef337, undef342, undef343, undef344, undef345, undef346, undef348, undef359, undef360, undef361, undef362, undef369, undef370, undef371, undef379, undef384, undef385, undef390, undef391, undef400, undef401, undef405, undef406, undef411, undef412, undef413, undef421, undef422, undef426, undef427, undef432, undef433, undef434, undef442, undef443, undef447, undef453, undef454, undef455, undef463, undef464, undef468, undef469, undef474, undef475, undef476, undef484, undef489, undef490, undef491, undef492, undef493, undef495, undef505, undef506, undef507, undef510, undef516, undef517, undef518, Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef337, x1^0 -> undef342, x2^0 -> undef343, x3^0 -> undef344, x4^0 -> undef345, x5^0 -> undef346, x6^0 -> undef348, rest remain the same}> undef1, x1^0 -> undef6, x2^0 -> undef7, x3^0 -> undef8, x4^0 -> undef9, x5^0 -> undef11, x6^0 -> undef12, rest remain the same}> undef1, x1^0 -> undef6, x2^0 -> undef7, x3^0 -> undef8, x4^0 -> undef9, x5^0 -> undef11, x6^0 -> undef12, rest remain the same}> undef253, x1^0 -> undef258, x2^0 -> undef259, x3^0 -> undef260, x4^0 -> 1, x5^0 -> undef262, x6^0 -> undef264, rest remain the same}> Variables: x0^0, x1^0, x2^0, x3^0, x4^0, x5^0, x6^0 Graph 2: Transitions: Variables: Precedence: Graph 0 Graph 1 undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef1, x1^0 -> undef6, x2^0 -> undef7, x3^0 -> undef8, x4^0 -> undef9, x5^0 -> undef11, x6^0 -> undef12, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> undef379, x1^0 -> undef384, x2^0 -> undef385, x3^0 -> undef390, x4^0 -> 0, x5^0 -> 0, x6^0 -> undef391, rest remain the same}> Graph 2 undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> undef369, x1^0 -> undef370, x2^0 -> undef371, x3^0 -> undef359, x4^0 -> undef360, x5^0 -> undef361, x6^0 -> undef362, rest remain the same}> Map Locations to Subgraph: ( 0 , 0 ) ( 2 , 1 ) ( 6 , 1 ) ( 8 , 2 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 0.056898 Checking conditional termination of SCC {l2, l6}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.020726s Ranking function: -5 + (5 / 2)*x0^0 + (~(5) / 2)*x2^0 New Graphs: Transitions: undef1, x1^0 -> undef6, x2^0 -> undef7, x3^0 -> undef8, x4^0 -> undef9, x5^0 -> undef11, x6^0 -> undef12, rest remain the same}> undef1, x1^0 -> undef6, x2^0 -> undef7, x3^0 -> undef8, x4^0 -> undef9, x5^0 -> undef11, x6^0 -> undef12, rest remain the same}> undef253, x1^0 -> undef258, x2^0 -> undef259, x3^0 -> undef260, x4^0 -> 1, x5^0 -> undef262, x6^0 -> undef264, rest remain the same}> Variables: x0^0, x1^0, x2^0, x3^0, x4^0, x5^0, x6^0 Checking conditional termination of SCC {l2}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.004504s Ranking function: 3*x1^0 - 3*x5^0 New Graphs: Transitions: undef253, x1^0 -> undef258, x2^0 -> undef259, x3^0 -> undef260, x4^0 -> 1, x5^0 -> undef262, x6^0 -> undef264, rest remain the same}> Variables: x0^0, x1^0, x2^0, x3^0, x4^0, x5^0, x6^0 Checking conditional termination of SCC {l2}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.001307s Ranking function: -x4^0 New Graphs: Proving termination of subgraph 2 Analyzing SCC {l8}... No cycles found. Program Terminates