YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: undef1, oldX1^0 -> undef4, oldX2^0 -> undef5, oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef9, x0^0 -> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> undef19, oldX1^0 -> undef22, oldX2^0 -> undef23, oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef27, oldX7^0 -> undef28, oldX8^0 -> undef29, x0^0 -> (0 + undef19), x1^0 -> (0 + undef22), x2^0 -> (0 + undef23), x3^0 -> (0 + undef27), x4^0 -> (0 + undef28), x5^0 -> (0 + undef29)}> undef37, oldX1^0 -> undef40, oldX2^0 -> undef41, oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef45, oldX7^0 -> undef46, oldX8^0 -> undef47, x0^0 -> (0 + undef37), x1^0 -> (0 + undef40), x2^0 -> (0 + undef41), x3^0 -> (0 + undef45), x4^0 -> (0 + undef46), x5^0 -> (0 + undef47)}> undef55, oldX1^0 -> undef58, oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef63, oldX7^0 -> undef64, oldX8^0 -> undef65, x0^0 -> (0 + undef55), x1^0 -> (0 + undef58), x2^0 -> 0, x3^0 -> (0 + undef63), x4^0 -> (0 + undef64), x5^0 -> (0 + undef65)}> undef73, oldX10^0 -> undef74, oldX11^0 -> undef75, oldX1^0 -> undef76, oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef81, oldX7^0 -> undef82, oldX8^0 -> undef83, oldX9^0 -> undef84, x0^0 -> (0 + undef73), x1^0 -> (1 + undef76), x2^0 -> (0 + undef81), x3^0 -> (0 + undef82), x4^0 -> (0 + undef83), x5^0 -> (0 + undef84)}> undef91, oldX10^0 -> undef92, oldX11^0 -> undef93, oldX1^0 -> undef94, oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef99, oldX7^0 -> undef100, oldX8^0 -> undef101, oldX9^0 -> undef102, x0^0 -> (0 + undef91), x1^0 -> (1 + undef94), x2^0 -> (0 + undef99), x3^0 -> (0 + undef100), x4^0 -> (0 + undef101), x5^0 -> (0 + undef102)}> undef109, oldX1^0 -> undef112, oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef117, oldX7^0 -> undef118, oldX8^0 -> undef119, oldX9^0 -> undef120, x0^0 -> (0 + undef109), x1^0 -> (0 + undef112), x2^0 -> (0 + undef117), x3^0 -> (0 + undef118), x4^0 -> (0 + undef119), x5^0 -> (0 + undef120)}> undef127, oldX1^0 -> undef130, oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef135, oldX7^0 -> undef136, oldX8^0 -> undef137, oldX9^0 -> undef138, x0^0 -> (0 + undef127), x1^0 -> (0 + undef130), x2^0 -> (0 + undef135), x3^0 -> (0 + undef136), x4^0 -> (0 + undef137), x5^0 -> (0 + undef138)}> undef145, oldX1^0 -> (0 + x1^0), oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef153, oldX7^0 -> undef154, oldX8^0 -> undef155, oldX9^0 -> undef156, x0^0 -> (0 + undef145), x1^0 -> 1, x2^0 -> (0 + undef153), x3^0 -> (0 + undef154), x4^0 -> (0 + undef155), x5^0 -> (0 + undef156)}> undef163, oldX1^0 -> undef166, oldX2^0 -> undef167, oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef171, oldX7^0 -> undef172, oldX8^0 -> undef173, x0^0 -> (0 + undef163), x1^0 -> (0 + undef166), x2^0 -> (1 + undef167), x3^0 -> (0 + undef171), x4^0 -> (0 + undef172), x5^0 -> (0 + undef173)}> undef181, oldX1^0 -> undef184, oldX2^0 -> undef185, oldX3^0 -> undef186, oldX4^0 -> undef187, oldX5^0 -> (0 + x5^0), x0^0 -> (0 + undef181), x1^0 -> (0 + undef184), x2^0 -> (0 + undef185), x3^0 -> (0 + undef186), x4^0 -> (0 + undef187), x5^0 -> (0 + undef186)}> undef199, oldX1^0 -> undef202, oldX2^0 -> undef203, oldX3^0 -> undef204, oldX4^0 -> (0 + x4^0), oldX5^0 -> undef206, oldX6^0 -> undef207, x0^0 -> (0 + undef199), x1^0 -> (0 + undef202), x2^0 -> (0 + undef203), x3^0 -> (1 + undef204), x4^0 -> (0 + undef206), x5^0 -> (0 + undef207)}> undef217, oldX1^0 -> undef220, oldX2^0 -> undef221, oldX3^0 -> undef222, oldX4^0 -> undef223, oldX5^0 -> (0 + x5^0), x0^0 -> (0 + undef217), x1^0 -> (0 + undef220), x2^0 -> (0 + undef221), x3^0 -> (0 + undef222), x4^0 -> (0 + undef223), x5^0 -> (0 + undef223)}> undef235, oldX1^0 -> undef238, oldX2^0 -> undef239, oldX3^0 -> undef240, oldX4^0 -> undef241, oldX5^0 -> (0 + x5^0), oldX6^0 -> undef243, x0^0 -> (0 + undef235), x1^0 -> (0 + undef238), x2^0 -> (0 + undef239), x3^0 -> (0 + undef240), x4^0 -> (0 + undef241), x5^0 -> (0 + undef243)}> undef253, oldX1^0 -> undef256, oldX2^0 -> undef257, oldX3^0 -> undef258, oldX4^0 -> undef259, oldX5^0 -> (0 + x5^0), oldX6^0 -> undef261, x0^0 -> (0 + undef253), x1^0 -> (0 + undef256), x2^0 -> (0 + undef257), x3^0 -> (0 + undef258), x4^0 -> (0 + undef259), x5^0 -> (0 + undef261)}> undef271, oldX1^0 -> undef274, oldX2^0 -> undef275, oldX3^0 -> undef276, oldX4^0 -> undef277, oldX5^0 -> (0 + x5^0), oldX6^0 -> undef279, x0^0 -> (0 + undef271), x1^0 -> (0 + undef274), x2^0 -> (0 + undef275), x3^0 -> (0 + undef276), x4^0 -> (0 + undef277), x5^0 -> (0 + undef279)}> undef289, oldX1^0 -> undef292, oldX2^0 -> undef293, oldX3^0 -> (0 + x3^0), oldX4^0 -> undef295, oldX5^0 -> (0 + x5^0), oldX6^0 -> undef297, oldX7^0 -> undef298, oldX8^0 -> undef299, x0^0 -> (0 + undef289), x1^0 -> (0 + undef292), x2^0 -> (0 + undef293), x3^0 -> (0 + undef297), x4^0 -> (0 + undef298), x5^0 -> (0 + undef299)}> undef307, oldX1^0 -> undef310, oldX2^0 -> undef311, oldX3^0 -> undef312, oldX4^0 -> undef313, oldX5^0 -> (0 + x5^0), x0^0 -> (0 + undef307), x1^0 -> (0 + undef310), x2^0 -> (0 + undef311), x3^0 -> (0 + undef312), x4^0 -> (0 + undef313), x5^0 -> (0 + undef313)}> undef325, oldX1^0 -> undef328, oldX2^0 -> undef329, oldX3^0 -> undef330, oldX4^0 -> undef331, oldX5^0 -> (0 + x5^0), oldX6^0 -> undef333, x0^0 -> (0 + undef325), x1^0 -> (0 + undef328), x2^0 -> (0 + undef329), x3^0 -> (0 + undef330), x4^0 -> (0 + undef331), x5^0 -> (0 + undef333)}> undef343, oldX1^0 -> undef346, oldX2^0 -> undef347, oldX3^0 -> undef348, oldX4^0 -> undef349, oldX5^0 -> (0 + x5^0), oldX6^0 -> undef351, x0^0 -> (0 + undef343), x1^0 -> (0 + undef346), x2^0 -> (0 + undef347), x3^0 -> (0 + undef348), x4^0 -> (0 + undef349), x5^0 -> (0 + undef351)}> undef361, oldX1^0 -> undef364, oldX2^0 -> undef365, oldX3^0 -> undef366, oldX4^0 -> undef367, oldX5^0 -> (0 + x5^0), oldX6^0 -> undef369, x0^0 -> (0 + undef361), x1^0 -> (0 + undef364), x2^0 -> (0 + undef365), x3^0 -> (0 + undef366), x4^0 -> (0 + undef367), x5^0 -> (0 + undef369)}> (0 + x0^0), oldX10^0 -> undef380, oldX11^0 -> undef381, oldX1^0 -> (0 + x1^0), oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef387, oldX7^0 -> undef388, oldX8^0 -> undef389, oldX9^0 -> undef390, x0^0 -> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> undef397, oldX10^0 -> undef398, oldX1^0 -> (0 + x1^0), oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef405, oldX7^0 -> undef406, oldX8^0 -> undef407, oldX9^0 -> undef408, x0^0 -> (0 + undef397), x1^0 -> (0 + undef405), x2^0 -> (0 + undef406), x3^0 -> (0 + undef407), x4^0 -> (0 + undef408), x5^0 -> (0 + undef398)}> (0 + x0^0), oldX10^0 -> undef416, oldX11^0 -> undef417, oldX1^0 -> (0 + x1^0), oldX2^0 -> (0 + x2^0), oldX3^0 -> (0 + x3^0), oldX4^0 -> (0 + x4^0), oldX5^0 -> (0 + x5^0), oldX6^0 -> undef423, oldX7^0 -> undef424, oldX8^0 -> undef425, oldX9^0 -> undef426, x0^0 -> (0 + undef423), x1^0 -> (0 + undef424), x2^0 -> (0 + undef425), x3^0 -> (0 + undef426), x4^0 -> (0 + undef416), x5^0 -> (0 + undef417)}> Fresh variables: undef1, undef4, undef5, undef9, undef19, undef22, undef23, undef27, undef28, undef29, undef37, undef40, undef41, undef45, undef46, undef47, undef55, undef58, undef63, undef64, undef65, undef73, undef74, undef75, undef76, undef81, undef82, undef83, undef84, undef91, undef92, undef93, undef94, undef99, undef100, undef101, undef102, undef109, undef112, undef117, undef118, undef119, undef120, undef127, undef130, undef135, undef136, undef137, undef138, undef145, undef153, undef154, undef155, undef156, undef163, undef166, undef167, undef171, undef172, undef173, undef181, undef184, undef185, undef186, undef187, undef199, undef202, undef203, undef204, undef206, undef207, undef217, undef220, undef221, undef222, undef223, undef235, undef238, undef239, undef240, undef241, undef243, undef253, undef256, undef257, undef258, undef259, undef261, undef271, undef274, undef275, undef276, undef277, undef279, undef289, undef292, undef293, undef295, undef297, undef298, undef299, undef307, undef310, undef311, undef312, undef313, undef325, undef328, undef329, undef330, undef331, undef333, undef343, undef346, undef347, undef348, undef349, undef351, undef361, undef364, undef365, undef366, undef367, undef369, undef380, undef381, undef387, undef388, undef389, undef390, undef397, undef398, undef405, undef406, undef407, undef408, undef416, undef417, undef423, undef424, undef425, undef426, Undef variables: undef1, undef4, undef5, undef9, undef19, undef22, undef23, undef27, undef28, undef29, undef37, undef40, undef41, undef45, undef46, undef47, undef55, undef58, undef63, undef64, undef65, undef73, undef74, undef75, undef76, undef81, undef82, undef83, undef84, undef91, undef92, undef93, undef94, undef99, undef100, undef101, undef102, undef109, undef112, undef117, undef118, undef119, undef120, undef127, undef130, undef135, undef136, undef137, undef138, undef145, undef153, undef154, undef155, undef156, undef163, undef166, undef167, undef171, undef172, undef173, undef181, undef184, undef185, undef186, undef187, undef199, undef202, undef203, undef204, undef206, undef207, undef217, undef220, undef221, undef222, undef223, undef235, undef238, undef239, undef240, undef241, undef243, undef253, undef256, undef257, undef258, undef259, undef261, undef271, undef274, undef275, undef276, undef277, undef279, undef289, undef292, undef293, undef295, undef297, undef298, undef299, undef307, undef310, undef311, undef312, undef313, undef325, undef328, undef329, undef330, undef331, undef333, undef343, undef346, undef347, undef348, undef349, undef351, undef361, undef364, undef365, undef366, undef367, undef369, undef380, undef381, undef387, undef388, undef389, undef390, undef397, undef398, undef405, undef406, undef407, undef408, undef416, undef417, undef423, undef424, undef425, undef426, Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> (0 + undef127), x1^0 -> (0 + undef130), x2^0 -> (0 + undef135), x3^0 -> (0 + undef136), x4^0 -> (0 + undef137), x5^0 -> (0 + undef138)}> (0 + undef423), x1^0 -> (0 + undef424), x2^0 -> (0 + undef425), x3^0 -> (0 + undef426), x4^0 -> (0 + undef416), x5^0 -> (0 + undef417)}> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> (0 + undef127), x1^0 -> (0 + undef130), x2^0 -> (0 + undef135), x3^0 -> (0 + undef136), x4^0 -> (0 + undef137), x5^0 -> (0 + undef138)}> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> (0 + undef127), x1^0 -> (0 + undef130), x2^0 -> (0 + undef135), x3^0 -> (0 + undef136), x4^0 -> (0 + undef137), x5^0 -> (0 + undef138)}> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> (0 + undef199), x1^0 -> (0 + undef202), x2^0 -> (0 + undef203), x3^0 -> (1 + undef204), x4^0 -> (0 + undef206), x5^0 -> (0 + undef207)}> (0 + undef199), x1^0 -> (0 + undef202), x2^0 -> (0 + undef203), x3^0 -> (1 + undef204), x4^0 -> (0 + undef206), x5^0 -> (0 + undef207)}> (0 + undef199), x1^0 -> (0 + undef202), x2^0 -> (0 + undef203), x3^0 -> (1 + undef204), x4^0 -> (0 + undef206), x5^0 -> (0 + undef207)}> (0 + undef325), x1^0 -> (0 + undef328), x2^0 -> (0 + undef329), x3^0 -> (0 + undef330), x4^0 -> (0 + undef331), x5^0 -> (0 + undef333)}> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> (0 + undef343), x1^0 -> (0 + undef346), x2^0 -> (0 + undef347), x3^0 -> (0 + undef348), x4^0 -> (0 + undef349), x5^0 -> (0 + undef351)}> (0 + undef199), x1^0 -> (0 + undef202), x2^0 -> (0 + undef203), x3^0 -> (1 + undef204), x4^0 -> (0 + undef206), x5^0 -> (0 + undef207)}> (0 + undef325), x1^0 -> (0 + undef328), x2^0 -> (0 + undef329), x3^0 -> (0 + undef330), x4^0 -> (0 + undef331), x5^0 -> (0 + undef333)}> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> (0 + undef127), x1^0 -> (0 + undef130), x2^0 -> (0 + undef135), x3^0 -> (0 + undef136), x4^0 -> (0 + undef137), x5^0 -> (0 + undef138)}> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> (0 + undef127), x1^0 -> (0 + undef130), x2^0 -> (0 + undef135), x3^0 -> (0 + undef136), x4^0 -> (0 + undef137), x5^0 -> (0 + undef138)}> (0 + undef199), x1^0 -> (0 + undef202), x2^0 -> (0 + undef203), x3^0 -> (1 + undef204), x4^0 -> (0 + undef206), x5^0 -> (0 + undef207)}> (0 + undef199), x1^0 -> (0 + undef202), x2^0 -> (0 + undef203), x3^0 -> (1 + undef204), x4^0 -> (0 + undef206), x5^0 -> (0 + undef207)}> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> (0 + undef1), x1^0 -> (0 + undef4), x2^0 -> (0 + undef5), x3^0 -> (1 + undef5), x4^0 -> (0 + undef1), x5^0 -> (0 + undef9)}> (0 + undef387), x1^0 -> (0 + undef388), x2^0 -> (0 + undef389), x3^0 -> (0 + undef390), x4^0 -> (0 + undef380), x5^0 -> (0 + undef381)}> Fresh variables: undef1, undef4, undef5, undef9, undef19, undef22, undef23, undef27, undef28, undef29, undef37, undef40, undef41, undef45, undef46, undef47, undef55, undef58, undef63, undef64, undef65, undef73, undef74, undef75, undef76, undef81, undef82, undef83, undef84, undef91, undef92, undef93, undef94, undef99, undef100, undef101, undef102, undef109, undef112, undef117, undef118, undef119, undef120, undef127, undef130, undef135, undef136, undef137, undef138, undef145, undef153, undef154, undef155, undef156, undef163, undef166, undef167, undef171, undef172, undef173, undef181, undef184, undef185, undef186, undef187, undef199, undef202, undef203, undef204, undef206, undef207, undef217, undef220, undef221, undef222, undef223, undef235, undef238, undef239, undef240, undef241, undef243, undef253, undef256, undef257, undef258, undef259, undef261, undef271, undef274, undef275, undef276, undef277, undef279, undef289, undef292, undef293, undef295, undef297, undef298, undef299, undef307, undef310, undef311, undef312, undef313, undef325, undef328, undef329, undef330, undef331, undef333, undef343, undef346, undef347, undef348, undef349, undef351, undef361, undef364, undef365, undef366, undef367, undef369, undef380, undef381, undef387, undef388, undef389, undef390, undef397, undef398, undef405, undef406, undef407, undef408, undef416, undef417, undef423, undef424, undef425, undef426, Undef variables: undef1, undef4, undef5, undef9, undef19, undef22, undef23, undef27, undef28, undef29, undef37, undef40, undef41, undef45, undef46, undef47, undef55, undef58, undef63, undef64, undef65, undef73, undef74, undef75, undef76, undef81, undef82, undef83, undef84, undef91, undef92, undef93, undef94, undef99, undef100, undef101, undef102, undef109, undef112, undef117, undef118, undef119, undef120, undef127, undef130, undef135, undef136, undef137, undef138, undef145, undef153, undef154, undef155, undef156, undef163, undef166, undef167, undef171, undef172, undef173, undef181, undef184, undef185, undef186, undef187, undef199, undef202, undef203, undef204, undef206, undef207, undef217, undef220, undef221, undef222, undef223, undef235, undef238, undef239, undef240, undef241, undef243, undef253, undef256, undef257, undef258, undef259, undef261, undef271, undef274, undef275, undef276, undef277, undef279, undef289, undef292, undef293, undef295, undef297, undef298, undef299, undef307, undef310, undef311, undef312, undef313, undef325, undef328, undef329, undef330, undef331, undef333, undef343, undef346, undef347, undef348, undef349, undef351, undef361, undef364, undef365, undef366, undef367, undef369, undef380, undef381, undef387, undef388, undef389, undef390, undef397, undef398, undef405, undef406, undef407, undef408, undef416, undef417, undef423, undef424, undef425, undef426, Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: Variables: Graph 2: Transitions: undef127, x1^0 -> undef130, x2^0 -> undef135, x3^0 -> undef136, x4^0 -> undef137, x5^0 -> undef138, rest remain the same}> undef127, x1^0 -> undef130, x2^0 -> undef135, x3^0 -> undef136, x4^0 -> undef137, x5^0 -> undef138, rest remain the same}> Variables: x0^0, x1^0, x2^0, x3^0, x4^0, x5^0 Graph 3: Transitions: undef343, x1^0 -> undef346, x2^0 -> undef347, x3^0 -> undef348, x4^0 -> undef349, x5^0 -> undef351, rest remain the same}> undef199, x1^0 -> undef202, x2^0 -> undef203, x3^0 -> 1 + undef204, x4^0 -> undef206, x5^0 -> undef207, rest remain the same}> undef325, x1^0 -> undef328, x2^0 -> undef329, x3^0 -> undef330, x4^0 -> undef331, x5^0 -> undef333, rest remain the same}> undef199, x1^0 -> undef202, x2^0 -> undef203, x3^0 -> 1 + undef204, x4^0 -> undef206, x5^0 -> undef207, rest remain the same}> undef199, x1^0 -> undef202, x2^0 -> undef203, x3^0 -> 1 + undef204, x4^0 -> undef206, x5^0 -> undef207, rest remain the same}> undef1, x1^0 -> undef4, x2^0 -> undef5, x3^0 -> 1 + undef5, x4^0 -> undef1, x5^0 -> undef9, rest remain the same}> undef1, x1^0 -> undef4, x2^0 -> undef5, x3^0 -> 1 + undef5, x4^0 -> undef1, x5^0 -> undef9, rest remain the same}> Variables: x0^0, x1^0, x2^0, x3^0, x4^0, x5^0 Graph 4: Transitions: Variables: Precedence: Graph 0 Graph 1 undef423, x1^0 -> undef424, x2^0 -> undef425, x3^0 -> undef426, x4^0 -> undef416, x5^0 -> undef417, rest remain the same}> Graph 2 undef127, x1^0 -> undef130, x2^0 -> undef135, x3^0 -> undef136, x4^0 -> undef137, x5^0 -> undef138, rest remain the same}> undef127, x1^0 -> undef130, x2^0 -> undef135, x3^0 -> undef136, x4^0 -> undef137, x5^0 -> undef138, rest remain the same}> undef127, x1^0 -> undef130, x2^0 -> undef135, x3^0 -> undef136, x4^0 -> undef137, x5^0 -> undef138, rest remain the same}> Graph 3 undef1, x1^0 -> undef4, x2^0 -> undef5, x3^0 -> 1 + undef5, x4^0 -> undef1, x5^0 -> undef9, rest remain the same}> undef1, x1^0 -> undef4, x2^0 -> undef5, x3^0 -> 1 + undef5, x4^0 -> undef1, x5^0 -> undef9, rest remain the same}> undef1, x1^0 -> undef4, x2^0 -> undef5, x3^0 -> 1 + undef5, x4^0 -> undef1, x5^0 -> undef9, rest remain the same}> undef1, x1^0 -> undef4, x2^0 -> undef5, x3^0 -> 1 + undef5, x4^0 -> undef1, x5^0 -> undef9, rest remain the same}> undef1, x1^0 -> undef4, x2^0 -> undef5, x3^0 -> 1 + undef5, x4^0 -> undef1, x5^0 -> undef9, rest remain the same}> undef1, x1^0 -> undef4, x2^0 -> undef5, x3^0 -> 1 + undef5, x4^0 -> undef1, x5^0 -> undef9, rest remain the same}> undef1, x1^0 -> undef4, x2^0 -> undef5, x3^0 -> 1 + undef5, x4^0 -> undef1, x5^0 -> undef9, rest remain the same}> undef199, x1^0 -> undef202, x2^0 -> undef203, x3^0 -> 1 + undef204, x4^0 -> undef206, x5^0 -> undef207, rest remain the same}> undef199, x1^0 -> undef202, x2^0 -> undef203, x3^0 -> 1 + undef204, x4^0 -> undef206, x5^0 -> undef207, rest remain the same}> undef199, x1^0 -> undef202, x2^0 -> undef203, x3^0 -> 1 + undef204, x4^0 -> undef206, x5^0 -> undef207, rest remain the same}> undef325, x1^0 -> undef328, x2^0 -> undef329, x3^0 -> undef330, x4^0 -> undef331, x5^0 -> undef333, rest remain the same}> undef1, x1^0 -> undef4, x2^0 -> undef5, x3^0 -> 1 + undef5, x4^0 -> undef1, x5^0 -> undef9, rest remain the same}> undef1, x1^0 -> undef4, x2^0 -> undef5, x3^0 -> 1 + undef5, x4^0 -> undef1, x5^0 -> undef9, rest remain the same}> Graph 4 undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> undef387, x1^0 -> undef388, x2^0 -> undef389, x3^0 -> undef390, x4^0 -> undef380, x5^0 -> undef381, rest remain the same}> Map Locations to Subgraph: ( 0 , 0 ) ( 2 , 3 ) ( 6 , 2 ) ( 12 , 3 ) ( 13 , 3 ) ( 15 , 4 ) ( 17 , 1 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Analyzing SCC {l17}... No cycles found. Proving termination of subgraph 2 Checking unfeasibility... Time used: 0.004351 Checking conditional termination of SCC {l6}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.001528s Ranking function: 2 + x0^0 - x1^0 New Graphs: Proving termination of subgraph 3 Checking unfeasibility... Time used: 0.033362 Checking conditional termination of SCC {l2, l12, l13}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.010998s Ranking function: 3*x0^0 - 3*x2^0 New Graphs: Transitions: undef199, x1^0 -> undef202, x2^0 -> undef203, x3^0 -> 1 + undef204, x4^0 -> undef206, x5^0 -> undef207, rest remain the same}> undef199, x1^0 -> undef202, x2^0 -> undef203, x3^0 -> 1 + undef204, x4^0 -> undef206, x5^0 -> undef207, rest remain the same}> undef199, x1^0 -> undef202, x2^0 -> undef203, x3^0 -> 1 + undef204, x4^0 -> undef206, x5^0 -> undef207, rest remain the same}> Variables: x0^0, x1^0, x2^0, x3^0, x4^0, x5^0 Checking conditional termination of SCC {l2}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.004886s Ranking function: x0^0 - x3^0 New Graphs: Proving termination of subgraph 4 Analyzing SCC {l15}... No cycles found. Program Terminates