YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: (0 + x0^0), oldX1^0 -> (0 + x1^0), oldX2^0 -> undef3, oldX3^0 -> undef4, x0^0 -> (0 + undef3), x1^0 -> (0 + undef4)}> undef7, oldX1^0 -> undef8, x0^0 -> (0 + (2 * undef7)), x1^0 -> (1 + undef8)}> undef13, oldX1^0 -> undef14, x0^0 -> (0 + undef13), x1^0 -> (0 + undef14)}> undef19, oldX1^0 -> undef20, x0^0 -> (0 + undef19), x1^0 -> (0 + undef20)}> undef25, oldX1^0 -> undef26, x0^0 -> (0 + undef25), x1^0 -> (0 + undef26)}> (0 + x0^0), oldX1^0 -> (0 + x1^0), oldX2^0 -> undef33, oldX3^0 -> undef34, x0^0 -> (0 + undef33), x1^0 -> (0 + undef34)}> (0 + x0^0), oldX1^0 -> (0 + x1^0), oldX2^0 -> undef39, oldX3^0 -> undef40, x0^0 -> (0 + undef39), x1^0 -> (0 + undef40)}> Fresh variables: undef3, undef4, undef7, undef8, undef13, undef14, undef19, undef20, undef25, undef26, undef33, undef34, undef39, undef40, Undef variables: undef3, undef4, undef7, undef8, undef13, undef14, undef19, undef20, undef25, undef26, undef33, undef34, undef39, undef40, Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: (0 + undef3), x1^0 -> (0 + undef4)}> (0 + undef3), x1^0 -> (0 + undef4)}> (0 + undef25), x1^0 -> (0 + undef26)}> (0 + undef3), x1^0 -> (0 + undef4)}> (0 + undef3), x1^0 -> (0 + undef4)}> (0 + undef3), x1^0 -> (0 + undef4)}> (0 + undef25), x1^0 -> (0 + undef26)}> (0 + undef3), x1^0 -> (0 + undef4)}> (0 + undef3), x1^0 -> (0 + undef4)}> (0 + undef25), x1^0 -> (0 + undef26)}> (0 + undef3), x1^0 -> (0 + undef4)}> (0 + undef3), x1^0 -> (0 + undef4)}> (0 + undef25), x1^0 -> (0 + undef26)}> Fresh variables: undef3, undef4, undef7, undef8, undef13, undef14, undef19, undef20, undef25, undef26, undef33, undef34, undef39, undef40, Undef variables: undef3, undef4, undef7, undef8, undef13, undef14, undef19, undef20, undef25, undef26, undef33, undef34, undef39, undef40, Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: undef25, x1^0 -> undef26, rest remain the same}> Variables: x0^0, x1^0 Graph 2: Transitions: Variables: Precedence: Graph 0 Graph 1 undef25, x1^0 -> undef26, rest remain the same}> undef25, x1^0 -> undef26, rest remain the same}> undef25, x1^0 -> undef26, rest remain the same}> Graph 2 undef3, x1^0 -> undef4, rest remain the same}> undef3, x1^0 -> undef4, rest remain the same}> undef3, x1^0 -> undef4, rest remain the same}> undef3, x1^0 -> undef4, rest remain the same}> undef3, x1^0 -> undef4, rest remain the same}> undef3, x1^0 -> undef4, rest remain the same}> undef3, x1^0 -> undef4, rest remain the same}> undef3, x1^0 -> undef4, rest remain the same}> undef3, x1^0 -> undef4, rest remain the same}> Map Locations to Subgraph: ( 0 , 0 ) ( 2 , 2 ) ( 3 , 1 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 0.001335 Checking conditional termination of SCC {l3}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000605s Ranking function: -x0^0 + (1 / 2)*x1^0 New Graphs: Proving termination of subgraph 2 Analyzing SCC {l2}... No cycles found. Program Terminates