YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: (~(1) + y^0)}> (~(1) + x^0), y^0 -> undef8}> Fresh variables: undef8, Undef variables: undef8, Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: (~(1) + x^0)}> (~(1) + y^0)}> (~(1) + x^0), y^0 -> undef8}> Fresh variables: undef8, Undef variables: undef8, Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: -1 + y^0, rest remain the same}> -1 + x^0, y^0 -> undef8, rest remain the same}> Variables: y^0, x^0 Precedence: Graph 0 Graph 1 -1 + x^0, rest remain the same}> Map Locations to Subgraph: ( 0 , 0 ) ( 1 , 1 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 0.001919 Checking conditional termination of SCC {l1}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000635s Ranking function: x^0 New Graphs: Transitions: -1 + y^0, rest remain the same}> Variables: y^0 Checking conditional termination of SCC {l1}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000276s Ranking function: -1 + y^0 New Graphs: Program Terminates