YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: (0 + s^0), s^0 -> (1 + s^0)}> 1, s^0 -> 1}> Fresh variables: Undef variables: Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: (0 + s^0), s^0 -> (1 + s^0)}> Fresh variables: Undef variables: Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: s^0, s^0 -> 1 + s^0, rest remain the same}> Variables: c^0, p^0, s^0 Precedence: Graph 0 Graph 1 Map Locations to Subgraph: ( 0 , 0 ) ( 1 , 1 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 0.002239 Checking conditional termination of SCC {l1}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000645s LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.001729s Trying to remove transition: s^0, s^0 -> 1 + s^0, rest remain the same}> Solving with 1 template(s). LOG: CALL solveNonLinearGetFirstSolution LOG: RETURN solveNonLinearGetFirstSolution - Elapsed time: 0.005069s Time used: 0.004901 Solving with 1 template(s). LOG: CALL solveNonLinearGetFirstSolution LOG: RETURN solveNonLinearGetFirstSolution - Elapsed time: 0.005726s Time used: 0.005427 LOG: SAT solveNonLinear - Elapsed time: 0.005726s Cost: 0; Total time: 0.005427 Termination implied by a set of invariant(s): Invariant at l1: s^0 <= 1 + p^0 [ Invariant Graph ] Strengthening and disabling transitions... LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): s^0, s^0 -> 1 + s^0, rest remain the same}> [ Termination Graph ] Strengthening and disabling transitions... LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): s^0, s^0 -> 1 + s^0, rest remain the same}> Ranking function: 1 + c^0 - s^0 New Graphs: INVARIANTS: 1: s^0 <= 1 + p^0 , Quasi-INVARIANTS to narrow Graph: 1: Program Terminates