YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: (1 + walker^0)}> (~(1) + walker^0)}> undef29, i^0 -> (0 + undef33), pos^0 -> 0, seq^0 -> undef33, walker^0 -> 1, z^0 -> undef35}> (0 + undef40), seq^0 -> undef40, z^0 -> undef42}> (~(1) + i^0)}> (~(1) + z^0)}> undef72}> Fresh variables: undef29, undef33, undef35, undef40, undef42, undef72, Undef variables: undef29, undef33, undef35, undef40, undef42, undef72, Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: (1 + walker^0), z^0 -> (~(1) + z^0)}> (~(1) + walker^0), z^0 -> (~(1) + z^0)}> (0 + undef40), seq^0 -> undef40, walker^0 -> (1 + walker^0), z^0 -> undef42}> (0 + undef40), seq^0 -> undef40, walker^0 -> (~(1) + walker^0), z^0 -> undef42}> (~(1) + i^0), walker^0 -> (~(1) + walker^0)}> Fresh variables: undef29, undef33, undef35, undef40, undef42, undef72, Undef variables: undef29, undef33, undef35, undef40, undef42, undef72, Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: 1 + walker^0, z^0 -> -1 + z^0, rest remain the same}> -1 + walker^0, z^0 -> -1 + z^0, rest remain the same}> undef40, seq^0 -> undef40, walker^0 -> 1 + walker^0, z^0 -> undef42, rest remain the same}> undef40, seq^0 -> undef40, walker^0 -> -1 + walker^0, z^0 -> undef42, rest remain the same}> -1 + i^0, walker^0 -> -1 + walker^0, rest remain the same}> Variables: N^0, seq^0, walker^0, z^0, i^0 Graph 2: Transitions: Variables: Precedence: Graph 0 Graph 1 Graph 2 Map Locations to Subgraph: ( 0 , 0 ) ( 2 , 2 ) ( 4 , 1 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 0.028628 Checking conditional termination of SCC {l4}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.003778s Ranking function: 6*N^0 - 6*seq^0 New Graphs: Transitions: 1 + walker^0, z^0 -> -1 + z^0, rest remain the same}> -1 + walker^0, z^0 -> -1 + z^0, rest remain the same}> -1 + i^0, walker^0 -> -1 + walker^0, rest remain the same}> Variables: N^0, i^0, seq^0, walker^0, z^0 Checking conditional termination of SCC {l4}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.001332s Ranking function: -6 + 6*z^0 New Graphs: Transitions: -1 + i^0, walker^0 -> -1 + walker^0, rest remain the same}> Variables: N^0, i^0, seq^0, walker^0, z^0 Checking conditional termination of SCC {l4}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000580s Ranking function: -1 + i^0 New Graphs: Proving termination of subgraph 2 Analyzing SCC {l2}... No cycles found. Program Terminates