YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: (1 + i^0)}> 1}> 0}> (1 + next^0), pos^0 -> 0}> (1 + pos^0)}> (1 + pos^0)}> (~(1) + z^0)}> 3}> 2}> 1}> 0}> 1}> 1}> (0 + br^0)}> (1 + next^0), pos^0 -> 0}> (1 + pos^0)}> (0 + bs^0), fr^0 -> (0 + fs^0), lr^0 -> (0 + ls^0)}> (1 + pos^0)}> (~(1) + z^0)}> 0, next^0 -> 1, pos^0 -> 0}> (0 + s_ab^0)}> 0}> 1}> 0}> 1}> Fresh variables: Undef variables: Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: (0 + s_ab^0), fs^0 -> 1, ls^0 -> 0}> (0 + s_ab^0), fs^0 -> 1, ls^0 -> 1}> (~(1) + z^0)}> (0 + bs^0), fr^0 -> (0 + fs^0), lr^0 -> (0 + ls^0), recv^0 -> 1, z^0 -> (~(1) + z^0)}> (0 + bs^0), fr^0 -> (0 + fs^0), lr^0 -> (0 + ls^0), r_ab^0 -> (0 + (0 + bs^0)), recv^0 -> 1, z^0 -> (~(1) + z^0)}> (1 + next^0), pos^0 -> 0}> (0 + bs^0), fr^0 -> (0 + fs^0), lr^0 -> (0 + ls^0), next^0 -> (1 + next^0), pos^0 -> 0, recv^0 -> 1}> (0 + bs^0), fr^0 -> (0 + fs^0), lr^0 -> (0 + ls^0), next^0 -> (1 + next^0), pos^0 -> 0, r_ab^0 -> (0 + (0 + bs^0)), recv^0 -> 1}> (0 + bs^0), fr^0 -> (0 + fs^0), lr^0 -> (0 + ls^0), pos^0 -> (1 + pos^0), recv^0 -> 1}> (0 + bs^0), fr^0 -> (0 + fs^0), lr^0 -> (0 + ls^0), pos^0 -> (1 + pos^0), r_ab^0 -> (0 + (0 + bs^0)), recv^0 -> 1}> (0 + bs^0), fr^0 -> (0 + fs^0), lr^0 -> (0 + ls^0), pos^0 -> (1 + pos^0), recv^0 -> 1}> (0 + bs^0), fr^0 -> (0 + fs^0), lr^0 -> (0 + ls^0), pos^0 -> (1 + pos^0), r_ab^0 -> (0 + (0 + bs^0)), recv^0 -> 1}> (1 + i^0), s_ab^0 -> 1}> (0 + 1), fs^0 -> 0, i^0 -> (1 + i^0), ls^0 -> 0, s_ab^0 -> 1}> (0 + 1), fs^0 -> 0, i^0 -> (1 + i^0), ls^0 -> 1, s_ab^0 -> 1}> (0 + 1), fs^0 -> 1, i^0 -> (1 + i^0), ls^0 -> 0, s_ab^0 -> 1}> (0 + 1), fs^0 -> 1, i^0 -> (1 + i^0), ls^0 -> 1, s_ab^0 -> 1}> (1 + i^0), s_ab^0 -> 0}> (0 + 0), fs^0 -> 0, i^0 -> (1 + i^0), ls^0 -> 0, s_ab^0 -> 0}> (0 + 0), fs^0 -> 0, i^0 -> (1 + i^0), ls^0 -> 1, s_ab^0 -> 0}> (0 + 0), fs^0 -> 1, i^0 -> (1 + i^0), ls^0 -> 0, s_ab^0 -> 0}> (0 + 0), fs^0 -> 1, i^0 -> (1 + i^0), ls^0 -> 1, s_ab^0 -> 0}> 1, z^0 -> (~(1) + z^0)}> 1, z^0 -> (~(1) + z^0)}> (1 + next^0), pos^0 -> 0, r_ab^0 -> 1}> (1 + next^0), pos^0 -> 0, r_ab^0 -> 1}> (1 + pos^0), r_ab^0 -> 1}> (1 + pos^0), r_ab^0 -> 1}> 0, z^0 -> (~(1) + z^0)}> 0, z^0 -> (~(1) + z^0)}> (1 + next^0), pos^0 -> 0, r_ab^0 -> 0}> (1 + next^0), pos^0 -> 0, r_ab^0 -> 0}> (1 + pos^0), r_ab^0 -> 0}> (1 + pos^0), r_ab^0 -> 0}> (~(1) + z^0)}> (~(1) + z^0)}> (1 + next^0), pos^0 -> 0}> (1 + next^0), pos^0 -> 0}> (1 + pos^0)}> (1 + pos^0)}> (~(1) + z^0)}> (~(1) + z^0)}> (1 + next^0), pos^0 -> 0}> (1 + next^0), pos^0 -> 0}> (1 + pos^0)}> (1 + pos^0)}> Fresh variables: Undef variables: Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: -1 + z^0, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, recv^0 -> 1, z^0 -> -1 + z^0, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, r_ab^0 -> bs^0, recv^0 -> 1, z^0 -> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 1, rest remain the same}> 1, fs^0 -> 1, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 1, rest remain the same}> 1, fs^0 -> 1, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 0, rest remain the same}> 0, fs^0 -> 1, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 0, rest remain the same}> 0, fs^0 -> 1, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, z^0 -> -1 + z^0, rest remain the same}> 1, z^0 -> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> 1 + pos^0, r_ab^0 -> 1, rest remain the same}> 1 + pos^0, r_ab^0 -> 1, rest remain the same}> 0, z^0 -> -1 + z^0, rest remain the same}> 0, z^0 -> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> 1 + pos^0, r_ab^0 -> 0, rest remain the same}> 1 + pos^0, r_ab^0 -> 0, rest remain the same}> -1 + z^0, rest remain the same}> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + pos^0, rest remain the same}> 1 + pos^0, rest remain the same}> -1 + z^0, rest remain the same}> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + pos^0, rest remain the same}> 1 + pos^0, rest remain the same}> Variables: N^0, c1^0, next^0, z^0, br^0, bs^0, fr^0, fs^0, lr^0, ls^0, recv^0, r_ab^0, pos^0, i^0, s_ab^0, c2^0 Graph 2: Transitions: Variables: Precedence: Graph 0 Graph 1 s_ab^0, fs^0 -> 1, ls^0 -> 0, rest remain the same}> s_ab^0, fs^0 -> 1, ls^0 -> 1, rest remain the same}> Graph 2 1 + i^0, s_ab^0 -> 1, rest remain the same}> 1 + i^0, s_ab^0 -> 0, rest remain the same}> Map Locations to Subgraph: ( 0 , 0 ) ( 4 , 1 ) ( 6 , 1 ) ( 13 , 1 ) ( 15 , 1 ) ( 19 , 1 ) ( 30 , 2 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 2.62817 Some transition disabled by a set of invariant(s): Invariant at l4: 0 <= i^0 Invariant at l6: 0 <= i^0 Invariant at l13: 0 <= i^0 Invariant at l15: 0 <= i^0 Invariant at l19: 0 <= i^0 Strengthening and disabling transitions... > It's unfeasible. Removing transition: 0, fs^0 -> 1, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): -1 + z^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): bs^0, fr^0 -> fs^0, lr^0 -> ls^0, recv^0 -> 1, z^0 -> -1 + z^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): bs^0, fr^0 -> fs^0, lr^0 -> ls^0, r_ab^0 -> bs^0, recv^0 -> 1, z^0 -> -1 + z^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + next^0, pos^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, recv^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility It's unfeasible. Removing transition: 1, fs^0 -> 1, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility It's unfeasible. Removing transition: 1, fs^0 -> 1, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility It's unfeasible. Removing transition: 0, fs^0 -> 1, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1, z^0 -> -1 + z^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1, z^0 -> -1 + z^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + pos^0, r_ab^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + pos^0, r_ab^0 -> 1, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 0, z^0 -> -1 + z^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 0, z^0 -> -1 + z^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + pos^0, r_ab^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + pos^0, r_ab^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): -1 + z^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): -1 + z^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + next^0, pos^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + next^0, pos^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + pos^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + pos^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): -1 + z^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): -1 + z^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + next^0, pos^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + next^0, pos^0 -> 0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + pos^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): 1 + pos^0, rest remain the same}> LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): Checking unfeasibility... Time used: 4.00049 Checking conditional termination of SCC {l4, l6, l13, l15, l19}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.034826s Ranking function: -9 + 4*c1^0 + 5*z^0 New Graphs: Transitions: -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, z^0 -> -1 + z^0, rest remain the same}> 1, z^0 -> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> 1 + pos^0, r_ab^0 -> 1, rest remain the same}> 1 + pos^0, r_ab^0 -> 1, rest remain the same}> 0, z^0 -> -1 + z^0, rest remain the same}> 0, z^0 -> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> 1 + pos^0, r_ab^0 -> 0, rest remain the same}> 1 + pos^0, r_ab^0 -> 0, rest remain the same}> -1 + z^0, rest remain the same}> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + pos^0, rest remain the same}> 1 + pos^0, rest remain the same}> -1 + z^0, rest remain the same}> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + pos^0, rest remain the same}> 1 + pos^0, rest remain the same}> Variables: N^0, br^0, bs^0, c1^0, c2^0, fr^0, fs^0, i^0, lr^0, ls^0, next^0, pos^0, r_ab^0, recv^0, s_ab^0, z^0 Checking conditional termination of SCC {l4, l6, l13, l15, l19}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.021745s Ranking function: -11 + N^0 - c1^0 - next^0 + 11*z^0 New Graphs: Transitions: 1 + next^0, pos^0 -> 0, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, z^0 -> -1 + z^0, rest remain the same}> 1, z^0 -> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> 1 + pos^0, r_ab^0 -> 1, rest remain the same}> 1 + pos^0, r_ab^0 -> 1, rest remain the same}> 0, z^0 -> -1 + z^0, rest remain the same}> 0, z^0 -> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> 1 + pos^0, r_ab^0 -> 0, rest remain the same}> 1 + pos^0, r_ab^0 -> 0, rest remain the same}> -1 + z^0, rest remain the same}> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + pos^0, rest remain the same}> 1 + pos^0, rest remain the same}> -1 + z^0, rest remain the same}> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + pos^0, rest remain the same}> 1 + pos^0, rest remain the same}> Variables: N^0, br^0, bs^0, c1^0, c2^0, fr^0, fs^0, i^0, lr^0, ls^0, next^0, pos^0, r_ab^0, recv^0, s_ab^0, z^0 Checking conditional termination of SCC {l4, l6, l13, l15, l19}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.020248s Ranking function: -8 + 8*N^0 - c1^0 - 8*next^0 + z^0 New Graphs: Transitions: bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 0, s_ab^0 -> 0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, z^0 -> -1 + z^0, rest remain the same}> 1, z^0 -> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> 1 + pos^0, r_ab^0 -> 1, rest remain the same}> 1 + pos^0, r_ab^0 -> 1, rest remain the same}> 0, z^0 -> -1 + z^0, rest remain the same}> 0, z^0 -> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> 1 + pos^0, r_ab^0 -> 0, rest remain the same}> 1 + pos^0, r_ab^0 -> 0, rest remain the same}> -1 + z^0, rest remain the same}> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + pos^0, rest remain the same}> 1 + pos^0, rest remain the same}> -1 + z^0, rest remain the same}> -1 + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1 + pos^0, rest remain the same}> 1 + pos^0, rest remain the same}> Variables: N^0, br^0, bs^0, c1^0, c2^0, fr^0, fs^0, i^0, lr^0, ls^0, next^0, pos^0, r_ab^0, recv^0, s_ab^0, z^0 Checking conditional termination of SCC {l4, l6, l13, l15, l19}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.019178s Ranking function: -24 + 9*N^0 - 2*i^0 - next^0 New Graphs: Transitions: bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> 1, z^0 -> -1 + z^0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, r_ab^0 -> 1, s_ab^0 -> 1, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, r_ab^0 -> 1, s_ab^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 0, z^0 -> -1 + z^0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, r_ab^0 -> 0, s_ab^0 -> 1, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, r_ab^0 -> 0, s_ab^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> -1 + z^0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 1, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> -1 + z^0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 1, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> Variables: N^0, br^0, bs^0, c1^0, c2^0, fr^0, fs^0, i^0, lr^0, ls^0, next^0, pos^0, r_ab^0, recv^0, s_ab^0, z^0 Checking conditional termination of SCC {l4, l13, l15, l19}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.061518s Ranking function: -4 + N^0 - 11*c2^0 - next^0 + 4*z^0 New Graphs: Transitions: bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, r_ab^0 -> 1, s_ab^0 -> 1, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, r_ab^0 -> 1, s_ab^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, r_ab^0 -> 0, s_ab^0 -> 1, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, r_ab^0 -> 0, s_ab^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 1, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 1, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, s_ab^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> Variables: N^0, br^0, bs^0, c1^0, c2^0, fr^0, fs^0, i^0, lr^0, ls^0, next^0, pos^0, r_ab^0, recv^0, s_ab^0, z^0 Checking conditional termination of SCC {l4, l13, l15, l19}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.053148s Ranking function: -15 + 3*N^0 - 2*i^0 - next^0 + 11*z^0 New Graphs: Transitions: bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, r_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1 + next^0, pos^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> Variables: N^0, br^0, bs^0, c1^0, c2^0, fr^0, fs^0, i^0, lr^0, ls^0, next^0, pos^0, r_ab^0, recv^0, s_ab^0, z^0 Checking conditional termination of SCC {l4, l13, l15, l19}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.033933s Ranking function: -4 + 4*N^0 - 13*c2^0 - 4*next^0 New Graphs: Transitions: bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, next^0 -> ((0 + 1) + 0) + next^0, pos^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> Variables: N^0, br^0, bs^0, c1^0, c2^0, fr^0, fs^0, i^0, lr^0, ls^0, next^0, pos^0, r_ab^0, recv^0, s_ab^0, z^0 Checking conditional termination of SCC {l4, l13, l15, l19}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.035369s Ranking function: -13 + 11*N^0 - 2*i^0 - 9*next^0 New Graphs: Transitions: bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, next^0 -> 1 + next^0, pos^0 -> 0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, recv^0 -> 1, rest remain the same}> bs^0, fr^0 -> fs^0, lr^0 -> ls^0, pos^0 -> 1 + pos^0, r_ab^0 -> bs^0, recv^0 -> 1, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 1, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, r_ab^0 -> 0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> 1, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 1, rest remain the same}> 0, fs^0 -> 0, i^0 -> 1 + i^0, ls^0 -> 1, pos^0 -> ((0 + 1) + 0) + pos^0, s_ab^0 -> 0, rest remain the same}> Variables: N^0, br^0, bs^0, c1^0, c2^0, fr^0, fs^0, i^0, lr^0, ls^0, next^0, pos^0, r_ab^0, recv^0, s_ab^0, z^0 Checking conditional termination of SCC {l4, l13, l15, l19}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.017893s Ranking function: -5 + (7 / 2)*N^0 - 2*i^0 - next^0 New Graphs: Proving termination of subgraph 2 Analyzing SCC {l30}... No cycles found. Program Terminates