YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: 1}> (1 + k^0)}> (~(1) + i^0), pos^0 -> 0}> (1 + pos^0)}> (3 + undef89), pos^0 -> 0, seq^0 -> undef89, z^0 -> undef90}> (~(1) + z^0)}> undef132}> (~(1) + i^0), pos^0 -> 0}> (1 + pos^0)}> (3 + undef189), pos^0 -> 0, seq^0 -> undef189, z^0 -> undef190}> (~(1) + z^0)}> undef235}> (~(1) + i^0), pos^0 -> 0}> (1 + pos^0)}> (3 + undef299), pos^0 -> 0, seq^0 -> undef299, z^0 -> undef300}> (~(1) + z^0)}> undef331, b_arp^0 -> 0, b_configured^0 -> 0, b_ip^0 -> 0, b_probe^0 -> 0, i^0 -> (3 + undef339), k^0 -> 0, pos^0 -> 0, seq^0 -> undef339, z^0 -> undef340}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0}> Fresh variables: undef89, undef90, undef132, undef189, undef190, undef235, undef299, undef300, undef331, undef339, undef340, undef374, Undef variables: undef89, undef90, undef132, undef189, undef190, undef235, undef299, undef300, undef331, undef339, undef340, undef374, Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: undef374, z^0 -> (~(1) + z^0)}> undef374, pos^0 -> (1 + pos^0)}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, z^0 -> (~(1) + z^0)}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, i^0 -> (3 + undef299), k^0 -> 0, pos^0 -> 0, seq^0 -> undef299, z^0 -> undef300}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, i^0 -> (~(1) + i^0), k^0 -> 0, pos^0 -> 0}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, pos^0 -> (1 + pos^0)}> 1}> undef235, z^0 -> (~(1) + z^0)}> undef235, i^0 -> (3 + undef189), pos^0 -> 0, seq^0 -> undef189, z^0 -> undef190}> undef235, i^0 -> (~(1) + i^0), pos^0 -> 0}> undef235, pos^0 -> (1 + pos^0)}> (1 + k^0)}> (1 + k^0)}> undef132, k^0 -> (1 + k^0), z^0 -> (~(1) + z^0)}> undef132, i^0 -> (3 + undef89), k^0 -> (1 + k^0), pos^0 -> 0, seq^0 -> undef89, z^0 -> undef90}> undef132, i^0 -> (~(1) + i^0), k^0 -> (1 + k^0), pos^0 -> 0}> undef132, k^0 -> (1 + k^0), pos^0 -> (1 + pos^0)}> Fresh variables: undef89, undef90, undef132, undef189, undef190, undef235, undef299, undef300, undef331, undef339, undef340, undef374, Undef variables: undef89, undef90, undef132, undef189, undef190, undef235, undef299, undef300, undef331, undef339, undef340, undef374, Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, z^0 -> -1 + z^0, rest remain the same}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, i^0 -> 3 + undef299, k^0 -> 0, pos^0 -> 0, seq^0 -> undef299, z^0 -> undef300, rest remain the same}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, i^0 -> -1 + i^0, k^0 -> 0, pos^0 -> 0, rest remain the same}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, pos^0 -> 1 + pos^0, rest remain the same}> undef235, z^0 -> -1 + z^0, rest remain the same}> undef235, i^0 -> 3 + undef189, pos^0 -> 0, seq^0 -> undef189, z^0 -> undef190, rest remain the same}> undef235, i^0 -> -1 + i^0, pos^0 -> 0, rest remain the same}> undef235, pos^0 -> 1 + pos^0, rest remain the same}> 1 + k^0, rest remain the same}> 1 + k^0, rest remain the same}> undef132, k^0 -> 1 + k^0, z^0 -> -1 + z^0, rest remain the same}> undef132, i^0 -> 3 + undef89, k^0 -> 1 + k^0, pos^0 -> 0, seq^0 -> undef89, z^0 -> undef90, rest remain the same}> undef132, i^0 -> -1 + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> undef132, k^0 -> 1 + k^0, pos^0 -> 1 + pos^0, rest remain the same}> Variables: N^0, b_arp^0, b_configured^0, b_ip^0, seq^0, z^0, i^0, pos^0, b_probe^0, k^0 Graph 2: Transitions: Variables: Precedence: Graph 0 Graph 1 undef374, z^0 -> -1 + z^0, rest remain the same}> undef374, pos^0 -> 1 + pos^0, rest remain the same}> Graph 2 1, rest remain the same}> Map Locations to Subgraph: ( 0 , 0 ) ( 6 , 1 ) ( 12 , 1 ) ( 23 , 2 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 4.01866 Checking conditional termination of SCC {l6, l12}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.012206s Ranking function: 2 + 2*N^0 - b_configured^0 - 2*seq^0 It's unfeasible after collapsing. Removing transition: undef132, b_probe^0 -> undef235, i^0 -> 2 + undef189, k^0 -> 1 + k^0, pos^0 -> 0, seq^0 -> undef189, z^0 -> undef190, rest remain the same}> It's unfeasible after collapsing. Removing transition: undef132, b_probe^0 -> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 0, z^0 -> -1 + z^0, rest remain the same}> It's unfeasible after collapsing. Removing transition: undef132, b_probe^0 -> undef235, i^0 -> -2 + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> It's unfeasible after collapsing. Removing transition: undef235, k^0 -> 1 + k^0, pos^0 -> ((0 + 1) + 0) + pos^0, rest remain the same}> It's unfeasible after collapsing. Removing transition: undef132, b_probe^0 -> undef235, k^0 -> 1 + k^0, pos^0 -> ((0 + 1) + 0) + pos^0, z^0 -> -1 + z^0, rest remain the same}> It's unfeasible after collapsing. Removing transition: undef132, b_probe^0 -> undef235, i^0 -> 3 + undef89, k^0 -> 1 + k^0, pos^0 -> 0, seq^0 -> undef89, z^0 -> undef90, rest remain the same}> It's unfeasible after collapsing. Removing transition: undef132, b_probe^0 -> undef235, i^0 -> -1 + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> It's unfeasible after collapsing. Removing transition: undef132, b_probe^0 -> undef235, k^0 -> 1 + k^0, pos^0 -> 2 + pos^0, rest remain the same}> New Graphs: Transitions: 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, z^0 -> -1 + z^0, rest remain the same}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, i^0 -> -1 + i^0, k^0 -> 0, pos^0 -> 0, rest remain the same}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, pos^0 -> 1 + pos^0, rest remain the same}> undef235, k^0 -> 1 + k^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef235, k^0 -> 1 + k^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, k^0 -> 1 + k^0, z^0 -> -2 + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> 3 + undef89, k^0 -> 1 + k^0, pos^0 -> 0, seq^0 -> undef89, z^0 -> undef90, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> -1 + i^0, k^0 -> 1 + k^0, pos^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, k^0 -> 1 + k^0, pos^0 -> 1 + pos^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef235, i^0 -> ((0 + 3) + 0) + undef189, k^0 -> 1 + k^0, pos^0 -> 0, seq^0 -> undef189, z^0 -> undef190, rest remain the same}> undef235, i^0 -> ((0 + 3) + 0) + undef189, k^0 -> 1 + k^0, pos^0 -> 0, seq^0 -> undef189, z^0 -> undef190, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> ((0 + 3) + 0) + undef189, k^0 -> 1 + k^0, pos^0 -> 0, seq^0 -> undef189, z^0 -> -1 + undef190, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> 3 + undef89, k^0 -> 1 + k^0, pos^0 -> 0, seq^0 -> undef89, z^0 -> undef90, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> ((0 + 3) + 0) + undef189, k^0 -> 1 + k^0, pos^0 -> 1, seq^0 -> undef189, z^0 -> undef190, rest remain the same}> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> 3 + undef89, k^0 -> 1 + k^0, pos^0 -> 0, seq^0 -> undef89, z^0 -> undef90, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 1, rest remain the same}> undef235, k^0 -> 1 + k^0, pos^0 -> ((0 + 1) + 0) + pos^0, rest remain the same}> Variables: N^0, b_arp^0, b_configured^0, b_ip^0, b_probe^0, i^0, k^0, pos^0, seq^0, z^0 Checking conditional termination of SCC {l6}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.020793s Ranking function: 6*N^0 - 6*seq^0 New Graphs: Transitions: 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, z^0 -> -1 + z^0, rest remain the same}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, i^0 -> -1 + i^0, k^0 -> 0, pos^0 -> 0, rest remain the same}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, pos^0 -> 1 + pos^0, rest remain the same}> undef235, k^0 -> 1 + k^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef235, k^0 -> 1 + k^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, k^0 -> 1 + k^0, z^0 -> -2 + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> -1 + i^0, k^0 -> 1 + k^0, pos^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, k^0 -> 1 + k^0, pos^0 -> 1 + pos^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 1, rest remain the same}> undef235, k^0 -> 1 + k^0, pos^0 -> ((0 + 1) + 0) + pos^0, rest remain the same}> Variables: N^0, b_arp^0, b_configured^0, b_ip^0, b_probe^0, i^0, k^0, pos^0, seq^0, z^0 Checking conditional termination of SCC {l6}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.008087s Ranking function: -7 + N^0 - b_configured^0 - seq^0 + 8*z^0 New Graphs: Transitions: 0, b_ip^0 -> undef374, b_probe^0 -> 0, i^0 -> -1 + i^0, k^0 -> 0, pos^0 -> 0, rest remain the same}> 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, pos^0 -> 1 + pos^0, rest remain the same}> undef235, k^0 -> 1 + k^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef235, k^0 -> 1 + k^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, k^0 -> 1 + k^0, z^0 -> -2 + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> -1 + i^0, k^0 -> 1 + k^0, pos^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, k^0 -> 1 + k^0, pos^0 -> 1 + pos^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 1, rest remain the same}> undef235, k^0 -> 1 + k^0, pos^0 -> ((0 + 1) + 0) + pos^0, rest remain the same}> Variables: N^0, b_arp^0, b_configured^0, b_ip^0, b_probe^0, i^0, k^0, pos^0, seq^0, z^0 Checking conditional termination of SCC {l6}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.008431s Ranking function: -7 + N^0 - b_configured^0 + 8*i^0 - seq^0 New Graphs: Transitions: 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, pos^0 -> 1 + pos^0, rest remain the same}> undef235, k^0 -> 1 + k^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef235, k^0 -> 1 + k^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, k^0 -> 1 + k^0, z^0 -> -2 + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> -1 + i^0, k^0 -> 1 + k^0, pos^0 -> 0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef132, b_probe^0 -> undef235, k^0 -> 1 + k^0, pos^0 -> 1 + pos^0, z^0 -> ((0 + ~(1)) + 0) + z^0, rest remain the same}> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 1, rest remain the same}> undef235, k^0 -> 1 + k^0, pos^0 -> ((0 + 1) + 0) + pos^0, rest remain the same}> Variables: N^0, b_arp^0, b_configured^0, b_ip^0, b_probe^0, i^0, k^0, pos^0, seq^0, z^0 Checking conditional termination of SCC {l6}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.006983s Ranking function: -6 + N^0 - seq^0 + 7*z^0 New Graphs: Transitions: 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, pos^0 -> 1 + pos^0, rest remain the same}> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 0, rest remain the same}> undef132, b_probe^0 -> undef235, i^0 -> ((0 + ~(1)) + 0) + i^0, k^0 -> 1 + k^0, pos^0 -> 1, rest remain the same}> undef235, k^0 -> 1 + k^0, pos^0 -> ((0 + 1) + 0) + pos^0, rest remain the same}> Variables: N^0, b_arp^0, b_configured^0, b_ip^0, b_probe^0, i^0, k^0, pos^0, seq^0, z^0 Checking conditional termination of SCC {l6}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.003748s Ranking function: N^0 + i^0 - seq^0 New Graphs: Transitions: 0, b_ip^0 -> undef374, b_probe^0 -> 0, k^0 -> 0, pos^0 -> 1 + pos^0, rest remain the same}> undef235, k^0 -> 1 + k^0, pos^0 -> ((0 + 1) + 0) + pos^0, rest remain the same}> Variables: N^0, b_arp^0, b_configured^0, b_ip^0, b_probe^0, i^0, k^0, pos^0, seq^0, z^0 Checking conditional termination of SCC {l6}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.001685s Ranking function: 1 + N^0 - pos^0 - seq^0 New Graphs: Proving termination of subgraph 2 Analyzing SCC {l23}... No cycles found. Program Terminates