YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: (1 + i^0), j^0 -> (2 + j^0)}> 0}> 0, x^0 -> 10}> Fresh variables: Undef variables: Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: 0}> (1 + i^0), j^0 -> (2 + j^0)}> Fresh variables: Undef variables: Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: 1 + i^0, j^0 -> 2 + j^0, rest remain the same}> Variables: i^0, j^0 Graph 2: Transitions: Variables: Precedence: Graph 0 Graph 1 0, rest remain the same}> Graph 2 Map Locations to Subgraph: ( 0 , 0 ) ( 3 , 1 ) ( 5 , 2 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 0.000991 Checking conditional termination of SCC {l3}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000322s Ranking function: 9 - i^0 New Graphs: Proving termination of subgraph 2 Analyzing SCC {l5}... No cycles found. Program Terminates