YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: 0, y_6^0 -> (~(1) + y_6^0)}> undef5}> 0}> 1, x_5^0 -> (1 + x_5^0)}> undef17}> Fresh variables: undef5, undef17, Undef variables: undef5, undef17, Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: 0, x_5^0 -> (1 + x_5^0), y_6^0 -> (~(1) + y_6^0)}> 1, x_5^0 -> (1 + x_5^0)}> Fresh variables: undef5, undef17, Undef variables: undef5, undef17, Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: 0, x_5^0 -> 1 + x_5^0, y_6^0 -> -1 + y_6^0, rest remain the same}> Variables: b_7^0, x_5^0, y_6^0 Graph 2: Transitions: Variables: Precedence: Graph 0 Graph 1 Graph 2 1, x_5^0 -> 1 + x_5^0, rest remain the same}> Map Locations to Subgraph: ( 0 , 0 ) ( 2 , 1 ) ( 3 , 2 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 0.00145 Checking conditional termination of SCC {l2}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000501s Ranking function: -1 + (~(1) / 2)*x_5^0 + (1 / 2)*y_6^0 New Graphs: Proving termination of subgraph 2 Analyzing SCC {l3}... No cycles found. Program Terminates