YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: 1, is_aborted^0 -> (0 + undef3), is_aborted_next^0 -> undef3, pc_Drive^0 -> (0 + undef7), pc_Drive_next^0 -> undef7, pc_Loop^0 -> 1, pc_Plan^0 -> undef9, pc_Plan_next^0 -> undef10, x^0 -> (0 + undef12), x_next^0 -> undef12, y^0 -> (0 + undef14), y_next^0 -> undef14}> (0 + undef17), is_aborted_next^0 -> undef17, pc_Drive^0 -> (0 + undef21), pc_Drive_next^0 -> undef21, pc_Loop^0 -> 1, pc_Plan^0 -> undef23, pc_Plan_next^0 -> undef24, x^0 -> (0 + undef26), x_next^0 -> undef26, y^0 -> (0 + undef28), y_next^0 -> undef28}> (0 + undef31), is_aborted_next^0 -> undef31, pc_Drive^0 -> (0 + undef35), pc_Drive_next^0 -> undef35, pc_Loop^0 -> 1, pc_Plan^0 -> undef37, pc_Plan_next^0 -> undef38, x^0 -> (0 + undef40), x_next^0 -> undef40, y^0 -> (0 + undef42), y_next^0 -> undef42}> 1, is_aborted^0 -> (0 + undef45), is_aborted_next^0 -> undef45, pc_Drive^0 -> (0 + undef49), pc_Drive_next^0 -> undef49, pc_Loop^0 -> 1, pc_Plan^0 -> undef51, pc_Plan_next^0 -> undef52, x^0 -> (0 + undef54), x_next^0 -> undef54, y^0 -> (0 + undef56), y_next^0 -> undef56}> (0 + undef59), is_aborted_next^0 -> undef59, pc_Drive^0 -> (0 + undef63), pc_Drive_next^0 -> undef63, pc_Loop^0 -> 1, pc_Plan^0 -> undef65, pc_Plan_next^0 -> undef66, x^0 -> (0 + undef68), x_next^0 -> undef68, y^0 -> (0 + undef70), y_next^0 -> undef70}> (0 + undef73), is_aborted_next^0 -> undef73, pc_Drive^0 -> (0 + undef77), pc_Drive_next^0 -> undef77, pc_Loop^0 -> 1, pc_Plan^0 -> undef79, pc_Plan_next^0 -> undef80, x^0 -> (0 + undef82), x_next^0 -> undef82, y^0 -> (0 + undef84), y_next^0 -> undef84}> undef85, is_aborted^0 -> (0 + undef87), is_aborted_next^0 -> undef87, pc_Drive^0 -> undef90, pc_Drive_next^0 -> undef91, pc_Loop^0 -> 4, pc_Plan^0 -> (0 + undef94), pc_Plan_next^0 -> undef94, x^0 -> (0 + undef96), x_next^0 -> undef96, y^0 -> (0 + undef98), y_next^0 -> undef98}> (0 + undef101), is_aborted_next^0 -> undef101, pc_Drive^0 -> undef104, pc_Drive_next^0 -> undef105, pc_Loop^0 -> 4, pc_Plan^0 -> (0 + undef108), pc_Plan_next^0 -> undef108, x^0 -> (0 + undef110), x_next^0 -> undef110, y^0 -> (0 + undef112), y_next^0 -> undef112}> (0 + undef115), is_aborted_next^0 -> undef115, pc_Drive^0 -> undef118, pc_Drive_next^0 -> undef119, pc_Loop^0 -> 4, pc_Plan^0 -> (0 + undef122), pc_Plan_next^0 -> undef122, x^0 -> (0 + undef124), x_next^0 -> undef124, y^0 -> (0 + undef126), y_next^0 -> undef126}> 1, is_aborted^0 -> (0 + undef129), is_aborted_next^0 -> undef129, pc_Drive^0 -> undef132, pc_Drive_next^0 -> undef133, pc_Loop^0 -> 4, pc_Plan^0 -> (0 + undef136), pc_Plan_next^0 -> undef136, x^0 -> (0 + undef138), x_next^0 -> undef138, y^0 -> (0 + undef140), y_next^0 -> undef140}> 0, is_aborted^0 -> (0 + undef143), is_aborted_next^0 -> undef143, pc_Drive^0 -> undef146, pc_Drive_next^0 -> undef147, pc_Loop^0 -> 4, pc_Plan^0 -> (0 + undef150), pc_Plan_next^0 -> undef150, x^0 -> (0 + undef152), x_next^0 -> undef152, y^0 -> (0 + undef154), y_next^0 -> undef154}> 0, is_aborted^0 -> (0 + undef157), is_aborted_next^0 -> undef157, pc_Drive^0 -> undef160, pc_Drive_next^0 -> undef161, pc_Loop^0 -> 4, pc_Plan^0 -> (0 + undef164), pc_Plan_next^0 -> undef164, x^0 -> (0 + undef166), x_next^0 -> undef166, y^0 -> (0 + undef168), y_next^0 -> undef168}> 1, is_aborted^0 -> undef170, is_aborted_next^0 -> undef171, pc_Drive^0 -> (0 + undef175), pc_Drive_next^0 -> undef175, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef178), pc_Plan_next^0 -> undef178, x^0 -> (0 + undef180), x_next^0 -> undef180, y^0 -> (0 + undef182), y_next^0 -> undef182}> undef184, is_aborted_next^0 -> undef185, pc_Drive^0 -> (0 + undef189), pc_Drive_next^0 -> undef189, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef192), pc_Plan_next^0 -> undef192, x^0 -> (0 + undef194), x_next^0 -> undef194, y^0 -> (0 + undef196), y_next^0 -> undef196}> undef198, is_aborted_next^0 -> undef199, pc_Drive^0 -> (0 + undef203), pc_Drive_next^0 -> undef203, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef206), pc_Plan_next^0 -> undef206, x^0 -> (0 + undef208), x_next^0 -> undef208, y^0 -> (0 + undef210), y_next^0 -> undef210}> 1, is_aborted^0 -> undef212, is_aborted_next^0 -> undef213, pc_Drive^0 -> (0 + undef217), pc_Drive_next^0 -> undef217, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef220), pc_Plan_next^0 -> undef220, x^0 -> undef221, x_next^0 -> undef222, y^0 -> undef223, y_next^0 -> undef224}> undef226, is_aborted_next^0 -> undef227, pc_Drive^0 -> (0 + undef231), pc_Drive_next^0 -> undef231, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef234), pc_Plan_next^0 -> undef234, x^0 -> undef235, x_next^0 -> undef236, y^0 -> undef237, y_next^0 -> undef238}> undef240, is_aborted_next^0 -> undef241, pc_Drive^0 -> (0 + undef245), pc_Drive_next^0 -> undef245, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef248), pc_Plan_next^0 -> undef248, x^0 -> undef249, x_next^0 -> undef250, y^0 -> undef251, y_next^0 -> undef252}> 0, is_aborted^0 -> undef254, is_aborted_next^0 -> undef255, pc_Drive^0 -> (0 + undef259), pc_Drive_next^0 -> undef259, pc_Loop^0 -> 2, pc_Plan^0 -> (0 + undef262), pc_Plan_next^0 -> undef262, x^0 -> undef263, x_next^0 -> undef264, y^0 -> undef265, y_next^0 -> undef266}> 0, is_aborted^0 -> undef269, is_aborted_next^0 -> undef270, pc_Drive^0 -> (0 + undef274), pc_Drive_next^0 -> undef274, pc_Loop^0 -> 2, pc_Plan^0 -> (0 + undef277), pc_Plan_next^0 -> undef277, x^0 -> undef278, x_next^0 -> undef279, y^0 -> undef280, y_next^0 -> undef281}> 0, is_aborted^0 -> undef283, is_aborted_next^0 -> undef284, pc_Drive^0 -> (0 + undef288), pc_Drive_next^0 -> undef288, pc_Loop^0 -> 2, pc_Plan^0 -> (0 + undef291), pc_Plan_next^0 -> undef291, x^0 -> undef292, x_next^0 -> undef293, y^0 -> undef294, y_next^0 -> undef295}> 1, is_aborted^0 -> undef297, is_aborted_next^0 -> undef298, pc_Drive^0 -> (0 + undef302), pc_Drive_next^0 -> undef302, pc_Loop^0 -> 6, pc_Plan^0 -> (0 + undef305), pc_Plan_next^0 -> undef305, x^0 -> (0 + undef307), x_next^0 -> undef307, y^0 -> (0 + undef309), y_next^0 -> undef309}> undef311, is_aborted_next^0 -> undef312, pc_Drive^0 -> (0 + undef316), pc_Drive_next^0 -> undef316, pc_Loop^0 -> 6, pc_Plan^0 -> (0 + undef319), pc_Plan_next^0 -> undef319, x^0 -> (0 + undef321), x_next^0 -> undef321, y^0 -> (0 + undef323), y_next^0 -> undef323}> undef325, is_aborted_next^0 -> undef326, pc_Drive^0 -> (0 + undef330), pc_Drive_next^0 -> undef330, pc_Loop^0 -> 6, pc_Plan^0 -> (0 + undef333), pc_Plan_next^0 -> undef333, x^0 -> (0 + undef335), x_next^0 -> undef335, y^0 -> (0 + undef337), y_next^0 -> undef337}> 1, is_aborted^0 -> undef339, is_aborted_next^0 -> undef340, pc_Drive^0 -> (0 + undef344), pc_Drive_next^0 -> undef344, pc_Loop^0 -> 3, pc_Plan^0 -> (0 + undef347), pc_Plan_next^0 -> undef347, x^0 -> (0 + undef349), x_next^0 -> undef349, y^0 -> (0 + undef351), y_next^0 -> undef351}> undef353, is_aborted_next^0 -> undef354, pc_Drive^0 -> (0 + undef358), pc_Drive_next^0 -> undef358, pc_Loop^0 -> 3, pc_Plan^0 -> (0 + undef361), pc_Plan_next^0 -> undef361, x^0 -> (0 + undef363), x_next^0 -> undef363, y^0 -> (0 + undef365), y_next^0 -> undef365}> undef367, is_aborted_next^0 -> undef368, pc_Drive^0 -> (0 + undef372), pc_Drive_next^0 -> undef372, pc_Loop^0 -> 3, pc_Plan^0 -> (0 + undef375), pc_Plan_next^0 -> undef375, x^0 -> (0 + undef377), x_next^0 -> undef377, y^0 -> (0 + undef379), y_next^0 -> undef379}> 1, is_aborted^0 -> undef381, is_aborted_next^0 -> undef382, pc_Drive^0 -> (0 + undef386), pc_Drive_next^0 -> undef386, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef389), pc_Plan_next^0 -> undef389, x^0 -> (0 + undef391), x_next^0 -> undef391, y^0 -> (0 + undef393), y_next^0 -> undef393}> undef395, is_aborted_next^0 -> undef396, pc_Drive^0 -> (0 + undef400), pc_Drive_next^0 -> undef400, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef403), pc_Plan_next^0 -> undef403, x^0 -> (0 + undef405), x_next^0 -> undef405, y^0 -> (0 + undef407), y_next^0 -> undef407}> undef409, is_aborted_next^0 -> undef410, pc_Drive^0 -> (0 + undef414), pc_Drive_next^0 -> undef414, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef417), pc_Plan_next^0 -> undef417, x^0 -> (0 + undef419), x_next^0 -> undef419, y^0 -> (0 + undef421), y_next^0 -> undef421}> 1, is_aborted^0 -> undef423, is_aborted_next^0 -> undef424, pc_Drive^0 -> (0 + undef428), pc_Drive_next^0 -> undef428, pc_Loop^0 -> 2, pc_Plan^0 -> undef430, pc_Plan_next^0 -> undef431, x^0 -> (0 + undef433), x_next^0 -> undef433, y^0 -> (0 + undef435), y_next^0 -> undef435}> 0, is_aborted^0 -> undef437, is_aborted_next^0 -> undef438, pc_Drive^0 -> (0 + undef442), pc_Drive_next^0 -> undef442, pc_Loop^0 -> 2, pc_Plan^0 -> undef444, pc_Plan_next^0 -> undef445, x^0 -> (0 + undef447), x_next^0 -> undef447, y^0 -> (0 + undef449), y_next^0 -> undef449}> 0, is_aborted^0 -> undef451, is_aborted_next^0 -> undef452, pc_Drive^0 -> (0 + undef456), pc_Drive_next^0 -> undef456, pc_Loop^0 -> 2, pc_Plan^0 -> undef458, pc_Plan_next^0 -> undef459, x^0 -> (0 + undef461), x_next^0 -> undef461, y^0 -> (0 + undef463), y_next^0 -> undef463}> 1, is_aborted^0 -> undef465, is_aborted_next^0 -> undef466, pc_Drive^0 -> (0 + undef470), pc_Drive_next^0 -> undef470, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef473), pc_Plan_next^0 -> undef473, x^0 -> (0 + undef475), x_next^0 -> undef475, y^0 -> (0 + undef477), y_next^0 -> undef477}> 0, is_aborted^0 -> undef479, is_aborted_next^0 -> undef480, pc_Drive^0 -> (0 + undef484), pc_Drive_next^0 -> undef484, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef487), pc_Plan_next^0 -> undef487, x^0 -> (0 + undef489), x_next^0 -> undef489, y^0 -> (0 + undef491), y_next^0 -> undef491}> 0, is_aborted^0 -> undef493, is_aborted_next^0 -> undef494, pc_Drive^0 -> (0 + undef498), pc_Drive_next^0 -> undef498, pc_Loop^0 -> 7, pc_Plan^0 -> (0 + undef501), pc_Plan_next^0 -> undef501, x^0 -> (0 + undef503), x_next^0 -> undef503, y^0 -> (0 + undef505), y_next^0 -> undef505}> Fresh variables: undef3, undef7, undef9, undef10, undef12, undef14, undef17, undef21, undef23, undef24, undef26, undef28, undef31, undef35, undef37, undef38, undef40, undef42, undef45, undef49, undef51, undef52, undef54, undef56, undef59, undef63, undef65, undef66, undef68, undef70, undef73, undef77, undef79, undef80, undef82, undef84, undef85, undef87, undef90, undef91, undef94, undef96, undef98, undef101, undef104, undef105, undef108, undef110, undef112, undef115, undef118, undef119, undef122, undef124, undef126, undef129, undef132, undef133, undef136, undef138, undef140, undef143, undef146, undef147, undef150, undef152, undef154, undef157, undef160, undef161, undef164, undef166, undef168, undef170, undef171, undef175, undef178, undef180, undef182, undef184, undef185, undef189, undef192, undef194, undef196, undef198, undef199, undef203, undef206, undef208, undef210, undef212, undef213, undef217, undef220, undef221, undef222, undef223, undef224, undef226, undef227, undef231, undef234, undef235, undef236, undef237, undef238, undef240, undef241, undef245, undef248, undef249, undef250, undef251, undef252, undef254, undef255, undef259, undef262, undef263, undef264, undef265, undef266, undef267, undef269, undef270, undef274, undef277, undef278, undef279, undef280, undef281, undef283, undef284, undef288, undef291, undef292, undef293, undef294, undef295, undef297, undef298, undef302, undef305, undef307, undef309, undef311, undef312, undef316, undef319, undef321, undef323, undef325, undef326, undef330, undef333, undef335, undef337, undef339, undef340, undef344, undef347, undef349, undef351, undef353, undef354, undef358, undef361, undef363, undef365, undef367, undef368, undef372, undef375, undef377, undef379, undef381, undef382, undef386, undef389, undef391, undef393, undef395, undef396, undef400, undef403, undef405, undef407, undef409, undef410, undef414, undef417, undef419, undef421, undef423, undef424, undef428, undef430, undef431, undef433, undef435, undef437, undef438, undef442, undef444, undef445, undef447, undef449, undef451, undef452, undef456, undef458, undef459, undef461, undef463, undef465, undef466, undef470, undef473, undef475, undef477, undef479, undef480, undef484, undef487, undef489, undef491, undef493, undef494, undef498, undef501, undef503, undef505, Undef variables: undef3, undef7, undef9, undef10, undef12, undef14, undef17, undef21, undef23, undef24, undef26, undef28, undef31, undef35, undef37, undef38, undef40, undef42, undef45, undef49, undef51, undef52, undef54, undef56, undef59, undef63, undef65, undef66, undef68, undef70, undef73, undef77, undef79, undef80, undef82, undef84, undef85, undef87, undef90, undef91, undef94, undef96, undef98, undef101, undef104, undef105, undef108, undef110, undef112, undef115, undef118, undef119, undef122, undef124, undef126, undef129, undef132, undef133, undef136, undef138, undef140, undef143, undef146, undef147, undef150, undef152, undef154, undef157, undef160, undef161, undef164, undef166, undef168, undef170, undef171, undef175, undef178, undef180, undef182, undef184, undef185, undef189, undef192, undef194, undef196, undef198, undef199, undef203, undef206, undef208, undef210, undef212, undef213, undef217, undef220, undef221, undef222, undef223, undef224, undef226, undef227, undef231, undef234, undef235, undef236, undef237, undef238, undef240, undef241, undef245, undef248, undef249, undef250, undef251, undef252, undef254, undef255, undef259, undef262, undef263, undef264, undef265, undef266, undef267, undef269, undef270, undef274, undef277, undef278, undef279, undef280, undef281, undef283, undef284, undef288, undef291, undef292, undef293, undef294, undef295, undef297, undef298, undef302, undef305, undef307, undef309, undef311, undef312, undef316, undef319, undef321, undef323, undef325, undef326, undef330, undef333, undef335, undef337, undef339, undef340, undef344, undef347, undef349, undef351, undef353, undef354, undef358, undef361, undef363, undef365, undef367, undef368, undef372, undef375, undef377, undef379, undef381, undef382, undef386, undef389, undef391, undef393, undef395, undef396, undef400, undef403, undef405, undef407, undef409, undef410, undef414, undef417, undef419, undef421, undef423, undef424, undef428, undef430, undef431, undef433, undef435, undef437, undef438, undef442, undef444, undef445, undef447, undef449, undef451, undef452, undef456, undef458, undef459, undef461, undef463, undef465, undef466, undef470, undef473, undef475, undef477, undef479, undef480, undef484, undef487, undef489, undef491, undef493, undef494, undef498, undef501, undef503, undef505, Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: 1, x^0 -> (0 + undef433), y^0 -> (0 + undef435)}> 0, x^0 -> (0 + undef447), y^0 -> (0 + undef449)}> 0, x^0 -> (0 + undef461), y^0 -> (0 + undef463)}> 1, x^0 -> (0 + undef475), y^0 -> (0 + undef477)}> 0, x^0 -> (0 + undef489), y^0 -> (0 + undef491)}> 0, x^0 -> (0 + undef503), y^0 -> (0 + undef505)}> 1, x^0 -> (0 + undef180), y^0 -> (0 + undef182)}> (0 + undef194), y^0 -> (0 + undef196)}> (0 + undef208), y^0 -> (0 + undef210)}> 1, x^0 -> undef221, y^0 -> undef223}> undef235, y^0 -> undef237}> undef249, y^0 -> undef251}> 0, x^0 -> undef263, y^0 -> undef265}> 0, x^0 -> undef278, y^0 -> undef280}> 0, x^0 -> undef292, y^0 -> undef294}> 1, x^0 -> (0 + undef110), y^0 -> (0 + undef112)}> 0, x^0 -> (0 + undef166), y^0 -> (0 + undef168)}> 1, x^0 -> (0 + undef110), y^0 -> (0 + undef112)}> 0, x^0 -> (0 + undef166), y^0 -> (0 + undef168)}> 1, x^0 -> (0 + undef110), y^0 -> (0 + undef112)}> 0, x^0 -> (0 + undef166), y^0 -> (0 + undef168)}> 1, x^0 -> (0 + undef110), y^0 -> (0 + undef112)}> 0, x^0 -> (0 + undef166), y^0 -> (0 + undef168)}> (0 + undef110), y^0 -> (0 + undef112)}> 0, x^0 -> (0 + undef166), y^0 -> (0 + undef168)}> (0 + undef110), y^0 -> (0 + undef112)}> 0, x^0 -> (0 + undef166), y^0 -> (0 + undef168)}> 1, x^0 -> (0 + undef110), y^0 -> (0 + undef112)}> 0, x^0 -> (0 + undef166), y^0 -> (0 + undef168)}> (0 + undef110), y^0 -> (0 + undef112)}> 0, x^0 -> (0 + undef166), y^0 -> (0 + undef168)}> (0 + undef110), y^0 -> (0 + undef112)}> 0, x^0 -> (0 + undef166), y^0 -> (0 + undef168)}> 1, x^0 -> (0 + undef391), y^0 -> (0 + undef393)}> (0 + undef405), y^0 -> (0 + undef407)}> (0 + undef419), y^0 -> (0 + undef421)}> Fresh variables: undef3, undef7, undef9, undef10, undef12, undef14, undef17, undef21, undef23, undef24, undef26, undef28, undef31, undef35, undef37, undef38, undef40, undef42, undef45, undef49, undef51, undef52, undef54, undef56, undef59, undef63, undef65, undef66, undef68, undef70, undef73, undef77, undef79, undef80, undef82, undef84, undef85, undef87, undef90, undef91, undef94, undef96, undef98, undef101, undef104, undef105, undef108, undef110, undef112, undef115, undef118, undef119, undef122, undef124, undef126, undef129, undef132, undef133, undef136, undef138, undef140, undef143, undef146, undef147, undef150, undef152, undef154, undef157, undef160, undef161, undef164, undef166, undef168, undef170, undef171, undef175, undef178, undef180, undef182, undef184, undef185, undef189, undef192, undef194, undef196, undef198, undef199, undef203, undef206, undef208, undef210, undef212, undef213, undef217, undef220, undef221, undef222, undef223, undef224, undef226, undef227, undef231, undef234, undef235, undef236, undef237, undef238, undef240, undef241, undef245, undef248, undef249, undef250, undef251, undef252, undef254, undef255, undef259, undef262, undef263, undef264, undef265, undef266, undef267, undef269, undef270, undef274, undef277, undef278, undef279, undef280, undef281, undef283, undef284, undef288, undef291, undef292, undef293, undef294, undef295, undef297, undef298, undef302, undef305, undef307, undef309, undef311, undef312, undef316, undef319, undef321, undef323, undef325, undef326, undef330, undef333, undef335, undef337, undef339, undef340, undef344, undef347, undef349, undef351, undef353, undef354, undef358, undef361, undef363, undef365, undef367, undef368, undef372, undef375, undef377, undef379, undef381, undef382, undef386, undef389, undef391, undef393, undef395, undef396, undef400, undef403, undef405, undef407, undef409, undef410, undef414, undef417, undef419, undef421, undef423, undef424, undef428, undef430, undef431, undef433, undef435, undef437, undef438, undef442, undef444, undef445, undef447, undef449, undef451, undef452, undef456, undef458, undef459, undef461, undef463, undef465, undef466, undef470, undef473, undef475, undef477, undef479, undef480, undef484, undef487, undef489, undef491, undef493, undef494, undef498, undef501, undef503, undef505, Undef variables: undef3, undef7, undef9, undef10, undef12, undef14, undef17, undef21, undef23, undef24, undef26, undef28, undef31, undef35, undef37, undef38, undef40, undef42, undef45, undef49, undef51, undef52, undef54, undef56, undef59, undef63, undef65, undef66, undef68, undef70, undef73, undef77, undef79, undef80, undef82, undef84, undef85, undef87, undef90, undef91, undef94, undef96, undef98, undef101, undef104, undef105, undef108, undef110, undef112, undef115, undef118, undef119, undef122, undef124, undef126, undef129, undef132, undef133, undef136, undef138, undef140, undef143, undef146, undef147, undef150, undef152, undef154, undef157, undef160, undef161, undef164, undef166, undef168, undef170, undef171, undef175, undef178, undef180, undef182, undef184, undef185, undef189, undef192, undef194, undef196, undef198, undef199, undef203, undef206, undef208, undef210, undef212, undef213, undef217, undef220, undef221, undef222, undef223, undef224, undef226, undef227, undef231, undef234, undef235, undef236, undef237, undef238, undef240, undef241, undef245, undef248, undef249, undef250, undef251, undef252, undef254, undef255, undef259, undef262, undef263, undef264, undef265, undef266, undef267, undef269, undef270, undef274, undef277, undef278, undef279, undef280, undef281, undef283, undef284, undef288, undef291, undef292, undef293, undef294, undef295, undef297, undef298, undef302, undef305, undef307, undef309, undef311, undef312, undef316, undef319, undef321, undef323, undef325, undef326, undef330, undef333, undef335, undef337, undef339, undef340, undef344, undef347, undef349, undef351, undef353, undef354, undef358, undef361, undef363, undef365, undef367, undef368, undef372, undef375, undef377, undef379, undef381, undef382, undef386, undef389, undef391, undef393, undef395, undef396, undef400, undef403, undef405, undef407, undef409, undef410, undef414, undef417, undef419, undef421, undef423, undef424, undef428, undef430, undef431, undef433, undef435, undef437, undef438, undef442, undef444, undef445, undef447, undef449, undef451, undef452, undef456, undef458, undef459, undef461, undef463, undef465, undef466, undef470, undef473, undef475, undef477, undef479, undef480, undef484, undef487, undef489, undef491, undef493, undef494, undef498, undef501, undef503, undef505, Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: 0, x^0 -> undef263, y^0 -> undef265, rest remain the same}> 0, x^0 -> undef278, y^0 -> undef280, rest remain the same}> 0, x^0 -> undef292, y^0 -> undef294, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> Variables: n0^0, n1^0, x^0, y^0, executed_Drive^0 Graph 2: Transitions: Variables: Precedence: Graph 0 Graph 1 1, x^0 -> undef433, y^0 -> undef435, rest remain the same}> 0, x^0 -> undef447, y^0 -> undef449, rest remain the same}> 0, x^0 -> undef461, y^0 -> undef463, rest remain the same}> Graph 2 1, x^0 -> undef475, y^0 -> undef477, rest remain the same}> 0, x^0 -> undef489, y^0 -> undef491, rest remain the same}> 0, x^0 -> undef503, y^0 -> undef505, rest remain the same}> 1, x^0 -> undef180, y^0 -> undef182, rest remain the same}> undef194, y^0 -> undef196, rest remain the same}> undef208, y^0 -> undef210, rest remain the same}> 1, x^0 -> undef221, y^0 -> undef223, rest remain the same}> undef235, y^0 -> undef237, rest remain the same}> undef249, y^0 -> undef251, rest remain the same}> 1, x^0 -> undef391, y^0 -> undef393, rest remain the same}> undef405, y^0 -> undef407, rest remain the same}> undef419, y^0 -> undef421, rest remain the same}> Map Locations to Subgraph: ( 0 , 0 ) ( 1 , 2 ) ( 4 , 1 ) ( 5 , 1 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 0.065476 Checking conditional termination of SCC {l4, l5}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.043102s Ranking function: -81 + (73 / 2)*n0^0 + 4*n1^0 + (~(73) / 2)*x^0 - 4*y^0 It's unfeasible after collapsing. Removing transition: 0, x^0 -> undef110, y^0 -> undef112, rest remain the same}> It's unfeasible after collapsing. Removing transition: 0, x^0 -> undef110, y^0 -> undef112, rest remain the same}> It's unfeasible after collapsing. Removing transition: 0, x^0 -> undef110, y^0 -> undef112, rest remain the same}> It's unfeasible after collapsing. Removing transition: 0, x^0 -> undef110, y^0 -> undef112, rest remain the same}> It's unfeasible after collapsing. Removing transition: 0, x^0 -> undef110, y^0 -> undef112, rest remain the same}> It's unfeasible after collapsing. Removing transition: 0, x^0 -> undef110, y^0 -> undef112, rest remain the same}> It's unfeasible after collapsing. Removing transition: 0, x^0 -> undef110, y^0 -> undef112, rest remain the same}> It's unfeasible after collapsing. Removing transition: 0, x^0 -> undef110, y^0 -> undef112, rest remain the same}> New Graphs: Transitions: 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 1, x^0 -> undef110, y^0 -> undef112, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> Variables: executed_Drive^0, n0^0, n1^0, x^0, y^0 Checking conditional termination of SCC {l4}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.142092s Ranking function: -10 + 5*n0^0 + 5*n1^0 - 5*x^0 - 5*y^0 New Graphs: Transitions: 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> 0, x^0 -> undef166, y^0 -> undef168, rest remain the same}> Variables: executed_Drive^0, n0^0, n1^0, x^0, y^0 Checking conditional termination of SCC {l4}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.048617s Ranking function: -11 + executed_Drive^0 + 5*n0^0 + 5*n1^0 - 5*x^0 - 5*y^0 New Graphs: Proving termination of subgraph 2 Analyzing SCC {l1}... No cycles found. Program Terminates