NO Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: undef1}> undef8}> undef18}> undef22}> (1 + x_5^0)}> Fresh variables: undef1, undef8, undef18, undef22, Undef variables: undef1, undef8, undef18, undef22, Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: undef22, x_5^0 -> (1 + x_5^0)}> Fresh variables: undef1, undef8, undef18, undef22, Undef variables: undef1, undef8, undef18, undef22, Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: undef22, x_5^0 -> 1 + x_5^0, rest remain the same}> Variables: x_5^0, y_6^0, __disjvr_0^0 Graph 2: Transitions: Variables: Precedence: Graph 0 Graph 1 Graph 2 Map Locations to Subgraph: ( 0 , 0 ) ( 1 , 1 ) ( 2 , 2 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 0.002306 Checking conditional termination of SCC {l1}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000567s Ranking function: -1 - x_5^0 + y_6^0 New Graphs: Transitions: Variables: x_5^0, y_6^0 > No variable changes in termination graph. Checking conditional unfeasibility... Calling Safety with literal y_6^0 <= x_5^0 and entry LOG: CALL check - Post:y_6^0 <= x_5^0 - Process 1 * Exit transition: * Postcondition : y_6^0 <= x_5^0 Quasi-invariants: Location 1: y_6^0 <= x_5^0 ; Postcondition: y_6^0 <= x_5^0 LOG: CALL check - Post:y_6^0 <= x_5^0 - Process 2 * Exit transition: * Postcondition : y_6^0 <= x_5^0 LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000126s > Postcondition is not implied! LOG: RETURN check - Elapsed time: 0.000153s LOG: NarrowEntry size 1 Narrowing transition: LOG: Narrow transition size 1 Narrowing transition: undef22, x_5^0 -> 1 + x_5^0, rest remain the same}> LOG: Narrow transition size 1 ENTRIES: END ENTRIES: GRAPH: undef22, x_5^0 -> 1 + x_5^0, rest remain the same}> END GRAPH: EXIT: POST: y_6^0 <= x_5^0 LOG: Try proving POST Solving with 1 template(s). LOG: CALL solveNonLinearGetFirstSolution LOG: RETURN solveNonLinearGetFirstSolution - Elapsed time: 0.006298s Time used: 0.006241 Solving with 2 template(s). LOG: CALL solveNonLinearGetFirstSolution LOG: RETURN solveNonLinearGetFirstSolution - Elapsed time: 4.000564s Time used: 4.00026 Solving with 3 template(s). LOG: CALL solveNonLinearGetFirstSolution LOG: RETURN solveNonLinearGetFirstSolution - Elapsed time: 1.001993s Time used: 1.00049 LOG: Postcondition is not implied - no solution > Postcondition is not implied! LOG: RETURN check - Elapsed time: 5.012882s Proving non-termination of subgraph 1 Transitions: undef22, x_5^0 -> 1 + x_5^0, rest remain the same}> Variables: x_5^0, y_6^0, __disjvr_0^0 Checking that every undef value has an assignment... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000520s Checking conditional non-termination of SCC {l1}... EXIT TRANSITIONS: Solving with 1 template(s). LOG: CALL solveNonLinearGetFirstSolution LOG: RETURN solveNonLinearGetFirstSolution - Elapsed time: 5.001769s Time used: 5.00159 Solving with 2 template(s). LOG: CALL solveNonLinearGetFirstSolution LOG: RETURN solveNonLinearGetFirstSolution - Elapsed time: 5.006366s Time used: 5.0004 Solving with 3 template(s). LOG: CALL solveNonLinearGetFirstSolution LOG: RETURN solveNonLinearGetFirstSolution - Elapsed time: 5.073465s Time used: 5.00138 > Checking if the negation of the conditions of every pending exit is quasi-invariant... NO Proving non-termination of subgraph 1 Transitions: Variables: x_5^0, y_6^0 Checking conditional non-termination of SCC {l1}... EXIT TRANSITIONS: Solving with 1 template(s). LOG: CALL solveNonLinearGetFirstSolution LOG: RETURN solveNonLinearGetFirstSolution - Elapsed time: 0.006610s Time used: 0.006479 Improving Solution with cost 1 ... LOG: CALL solveNonLinearGetNextSolution LOG: RETURN solveNonLinearGetNextSolution - Elapsed time: 0.007383s Time used: 0.007381 LOG: SAT solveNonLinear - Elapsed time: 0.013993s Cost: 1; Total time: 0.01386 Failed at location 1: 1 + x_5^0 <= y_6^0 Before Improving: Quasi-invariant at l1: 1 + x_5^0 <= y_6^0 Optimizing invariants... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.002228s Remaining time after improvement: 0.999462 Minimizing number of undef constraints... LOG: CALL solveNonLinear LOG: RETURN solveNonLinear - Elapsed time: 0.000960s Number of undef constraints reduced! Non-termination implied by a set of quasi-invariant(s): Quasi-invariant at l1: 1 + x_5^0 <= y_6^0 Strengthening and disabling EXIT transitions... Closed exits from l1: 1 Strengthening and disabling transitions... LOG: CALL solverLinear in Graph for feasibility LOG: RETURN solveLinear in Graph for feasibility Strengthening transition (result): Calling reachability with... Transition: Conditions: 1 + x_5^0 <= y_6^0, OPEN EXITS: --- Reachability graph --- > Graph without transitions. Calling reachability with... Transition: Conditions: 1 + x_5^0 <= y_6^0, OPEN EXITS: > Conditions are reachable! Program does NOT terminate