YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: (1 + x^0), y^0 -> (~(2) + y^0)}> undef5, y^0 -> (~(1) + undef5)}> Fresh variables: undef5, Undef variables: undef5, Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: (1 + x^0), y^0 -> (~(2) + y^0)}> undef5, y^0 -> (~(1) + undef5)}> Fresh variables: undef5, Undef variables: undef5, Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: 1 + x^0, y^0 -> -2 + y^0, rest remain the same}> undef5, y^0 -> -1 + undef5, rest remain the same}> Variables: x^0, y^0 Precedence: Graph 0 Graph 1 Map Locations to Subgraph: ( 0 , 0 ) ( 1 , 1 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 0.003372 Checking conditional termination of SCC {l1}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000791s LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.008889s Trying to remove transition: undef5, y^0 -> -1 + undef5, rest remain the same}> Solving with 1 template(s). LOG: CALL solveNonLinearGetFirstSolution LOG: RETURN solveNonLinearGetFirstSolution - Elapsed time: 0.007288s Time used: 0.007185 LOG: SAT solveNonLinear - Elapsed time: 0.007288s Cost: 0; Total time: 0.007185 Termination implied by a set of quasi-invariant(s): Quasi-invariant at l1: y^0 <= 1 Ranking function: x^0 Ranking function and negation of Quasi-Invariant applied New Graphs: Transitions: 1 + x^0, y^0 -> -2 + y^0, rest remain the same}> Variables: x^0, y^0 Checking conditional termination of SCC {l1}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000328s Ranking function: -1 + (1 / 2)*y^0 New Graphs: Program Terminates