YES Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: 1}> (~(1) + y^0)}> (1 + p^0)}> 0}> Fresh variables: Undef variables: Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: (~(1) + y^0)}> Fresh variables: Undef variables: Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: Variables: Graph 2: Transitions: -1 + y^0, rest remain the same}> Variables: y^0 Graph 3: Transitions: Variables: Precedence: Graph 0 Graph 1 Graph 2 Graph 3 Map Locations to Subgraph: ( 0 , 0 ) ( 2 , 3 ) ( 3 , 2 ) ( 5 , 1 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Analyzing SCC {l5}... No cycles found. Proving termination of subgraph 2 Checking unfeasibility... Time used: 0.000896 Checking conditional termination of SCC {l3}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000347s Ranking function: -1 + y^0 New Graphs: Proving termination of subgraph 3 Analyzing SCC {l2}... No cycles found. Program Terminates