NO Solver Timeout: 4 Global Timeout: 300 No parsing errors! Init Location: 0 Transitions: 0}> (arg1 + 1)}> 10)> undef4}> Fresh variables: undef4, Undef variables: undef4, Abstraction variables: Exit nodes: Accepting locations: Asserts: Preprocessed LLVMGraph Init Location: 0 Transitions: (arg1 + 1)}> 10)> Fresh variables: undef4, Undef variables: undef4, Abstraction variables: Exit nodes: Accepting locations: Asserts: ************************************************************* ******************************************************************************************* *********************** WORKING TRANSITION SYSTEM (DAG) *********************** ******************************************************************************************* Init Location: 0 Graph 0: Transitions: Variables: Graph 1: Transitions: 1 + arg1, rest remain the same}> Variables: arg1 Precedence: Graph 0 Graph 1 Map Locations to Subgraph: ( 0 , 0 ) ( 2 , 1 ) ******************************************************************************************* ******************************** CHECKING ASSERTIONS ******************************** ******************************************************************************************* Proving termination of subgraph 0 Proving termination of subgraph 1 Checking unfeasibility... Time used: 0.015212 Checking conditional termination of SCC {l2}... LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000443s Ranking function: 10 - arg1 New Graphs: Transitions: Variables: arg1 > No variable changes in termination graph. Checking conditional unfeasibility... Termination failed. Trying to show unreachability... Proving unreachability of entry: LOG: CALL check - Post:1 <= 0 - Process 1 * Exit transition: * Postcondition : 1 <= 0 LOG: CALL solveLinear LOG: RETURN solveLinear - Elapsed time: 0.000111s > Postcondition is not implied! LOG: RETURN check - Elapsed time: 0.000136s Cannot prove unreachability Proving non-termination of subgraph 1 Transitions: 1 + arg1, rest remain the same}> Variables: arg1 Checking conditional non-termination of SCC {l2}... > No exit transition to close. Calling reachability with... Transition: Conditions: OPEN EXITS: --- Reachability graph --- > Graph without transitions. Calling reachability with... Transition: Conditions: OPEN EXITS: > Conditions are reachable! Program does NOT terminate